December  2017, 37(12): 6291-6318. doi: 10.3934/dcds.2017272

Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

Received  January 2017 Revised  June 2017 Published  August 2017

In this paper, we provide a general approach to study the asymptotic behavior of traveling wave solutions for a three-component system with nonlocal dispersal. Then as an important application, we establish a new type of entire solutions which behave as two traveling wave solutions coming from both sides of $x$-axis for a three-species Lotka-Volterra competition system.

Citation: Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272
References:
[1]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[4]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.  doi: 10.1016/j.jde.2004.10.028.  Google Scholar

[5]

X. ChenJ. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. R. Soc. Edinb. Sect. A, 136 (2006), 1207-1237.  doi: 10.1017/S0308210500004959.  Google Scholar

[6]

X. ChenS. C. Fu and J. S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[7]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in non-local evolution equations, Arch. Ration. Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[8]

A. De MasiE. OrlandiE. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. R.Soc. Edinb. A, 124 (1994), 1013-1022.  doi: 10.1017/S0308210500022472.  Google Scholar

[9]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[10]

B. Ermentrout and J. Mcleod, Existence and uniqueness of travelling waves for a neural network, Proc. R. Soc. Edinb. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, (2003), 153-191.   Google Scholar

[12]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer, Berlin, 1979.  Google Scholar

[13]

Y. FukaoY. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanes J. Math., 8 (2004), 15-32.  doi: 10.11650/twjm/1500558454.  Google Scholar

[14]

J. S. Guo and C. H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[15]

J. S. GuoY. WangC. H. Wu and C. C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwan. J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[16]

J. S. Guo and Y. C. Lin, Entire solutions for a discrete diffusive equation with bistable convolution type nonlinearity, Osaka J. Math., 50 (2013), 607-629.   Google Scholar

[17]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku. Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[18]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[19]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equations, Comm. Pure Appl. Math., 52 (1999), 1255-1276.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.  Google Scholar

[20]

F. Hamel and N. Nadirashvili, Traveling fronts and entire solutions of the Fisher-KPP equation in $\mathbb{R}^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163.  doi: 10.1007/PL00004238.  Google Scholar

[21]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[22]

W. T. LiJ. B. Wang and L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501.  doi: 10.1016/j.jde.2016.05.006.  Google Scholar

[23]

W. T. LiZ. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.  doi: 10.1016/j.jde.2008.03.023.  Google Scholar

[24]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.  doi: 10.3934/dcds.2015.35.1531.  Google Scholar

[25]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion equations, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[26]

Y. Morita and H. Ninomiya, Entire solution with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[27]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.  doi: 10.1137/080723715.  Google Scholar

[28]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[29]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlineariry, 23 (2010), 1609-1630.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[30]

Z. C. WangW. T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 563-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[31]

Z. C. WangW. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Am. Math. Soc., 361 (2009), 2047-2084.  doi: 10.1090/S0002-9947-08-04694-1.  Google Scholar

[32]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[33]

C. H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[34]

S. L. Wu and H. Wang, Front-like entire solutions for monostable reaction-diffusion systems, J. Dynam. Differential Equations, 25 (2013), 505-533.  doi: 10.1007/s10884-013-9293-6.  Google Scholar

[35]

H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.  doi: 10.2977/prims/1145476150.  Google Scholar

[36]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[37]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224.  doi: 10.1007/s10884-014-9416-8.  Google Scholar

show all references

References:
[1]

P. W. BatesP. C. FifeX. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[2]

J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.  doi: 10.1090/S0002-9939-04-07432-5.  Google Scholar

[3]

X. Chen and J. S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann., 326 (2003), 123-146.  doi: 10.1007/s00208-003-0414-0.  Google Scholar

[4]

X. Chen and J. S. Guo, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differential Equations, 212 (2005), 62-84.  doi: 10.1016/j.jde.2004.10.028.  Google Scholar

[5]

X. ChenJ. S. Guo and H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. R. Soc. Edinb. Sect. A, 136 (2006), 1207-1237.  doi: 10.1017/S0308210500004959.  Google Scholar

[6]

X. ChenS. C. Fu and J. S. Guo, Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices, SIAM J. Math. Anal., 38 (2006), 233-258.  doi: 10.1137/050627824.  Google Scholar

[7]

A. De MasiT. Gobron and E. Presutti, Travelling fronts in non-local evolution equations, Arch. Ration. Mech. Anal., 132 (1995), 143-205.  doi: 10.1007/BF00380506.  Google Scholar

[8]

A. De MasiE. OrlandiE. Presutti and L. Triolo, Stability of the interface in a model of phase separation, Proc. R.Soc. Edinb. A, 124 (1994), 1013-1022.  doi: 10.1017/S0308210500022472.  Google Scholar

[9]

O. Diekmann and H. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal., 2 (1978), 721-737.  doi: 10.1016/0362-546X(78)90015-9.  Google Scholar

[10]

B. Ermentrout and J. Mcleod, Existence and uniqueness of travelling waves for a neural network, Proc. R. Soc. Edinb. A, 123 (1993), 461-478.  doi: 10.1017/S030821050002583X.  Google Scholar

[11]

P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, (2003), 153-191.   Google Scholar

[12]

P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer, Berlin, 1979.  Google Scholar

[13]

Y. FukaoY. Morita and H. Ninomiya, Some entire solutions of the Allen-Cahn equation, Taiwanes J. Math., 8 (2004), 15-32.  doi: 10.11650/twjm/1500558454.  Google Scholar

[14]

J. S. Guo and C. H. Wu, Traveling wave front for a two-component lattice dynamical system arising in competition models, J. Differential Equations, 252 (2012), 4357-4391.  doi: 10.1016/j.jde.2012.01.009.  Google Scholar

[15]

J. S. GuoY. WangC. H. Wu and C. C. Wu, The minimal speed of traveling wave solutions for a diffusive three species competition system, Taiwan. J. Math., 19 (2015), 1805-1829.  doi: 10.11650/tjm.19.2015.5373.  Google Scholar

[16]

J. S. Guo and Y. C. Lin, Entire solutions for a discrete diffusive equation with bistable convolution type nonlinearity, Osaka J. Math., 50 (2013), 607-629.   Google Scholar

[17]

J. S. Guo and C. H. Wu, Entire solutions for a two-component competition system in a lattice, Tohoku. Math. J., 62 (2010), 17-28.  doi: 10.2748/tmj/1270041024.  Google Scholar

[18]

J. S. Guo and Y. Morita, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12 (2005), 193-212.  doi: 10.3934/dcds.2005.12.193.  Google Scholar

[19]

F. Hamel and N. Nadirashvili, Entire solutions of the KPP equations, Comm. Pure Appl. Math., 52 (1999), 1255-1276.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.  Google Scholar

[20]

F. Hamel and N. Nadirashvili, Traveling fronts and entire solutions of the Fisher-KPP equation in $\mathbb{R}^{N}$, Arch. Rational Mech. Anal., 157 (2001), 91-163.  doi: 10.1007/PL00004238.  Google Scholar

[21]

W. T. LiY. J. Sun and Z. C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[22]

W. T. LiJ. B. Wang and L. Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats, J. Differential Equations, 261 (2016), 2472-2501.  doi: 10.1016/j.jde.2016.05.006.  Google Scholar

[23]

W. T. LiZ. C. Wang and J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245 (2008), 102-129.  doi: 10.1016/j.jde.2008.03.023.  Google Scholar

[24]

W. T. LiL. Zhang and G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35 (2015), 1531-1560.  doi: 10.3934/dcds.2015.35.1531.  Google Scholar

[25]

R. H. Martin and H. L. Smith, Abstract functional differential equations and reaction-diffusion equations, Trans. Amer. Math. Soc., 321 (1990), 1-44.  doi: 10.2307/2001590.  Google Scholar

[26]

Y. Morita and H. Ninomiya, Entire solution with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18 (2006), 841-861.  doi: 10.1007/s10884-006-9046-x.  Google Scholar

[27]

Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40 (2009), 2217-2240.  doi: 10.1137/080723715.  Google Scholar

[28]

Y. J. SunW. T. Li and Z. C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251 (2011), 551-581.  doi: 10.1016/j.jde.2011.04.020.  Google Scholar

[29]

M. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlineariry, 23 (2010), 1609-1630.  doi: 10.1088/0951-7715/23/7/005.  Google Scholar

[30]

Z. C. WangW. T. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 563-607.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[31]

Z. C. WangW. T. Li and S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Am. Math. Soc., 361 (2009), 2047-2084.  doi: 10.1090/S0002-9947-08-04694-1.  Google Scholar

[32]

Z. C. WangW. T. Li and J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009), 2392-2420.  doi: 10.1137/080727312.  Google Scholar

[33]

C. H. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dynam. Differential Equations, 28 (2016), 317-338.  doi: 10.1007/s10884-016-9524-8.  Google Scholar

[34]

S. L. Wu and H. Wang, Front-like entire solutions for monostable reaction-diffusion systems, J. Dynam. Differential Equations, 25 (2013), 505-533.  doi: 10.1007/s10884-013-9293-6.  Google Scholar

[35]

H. Yagisita, Backward global solutions characterizing annihilation dynamics of travelling fronts, Publ. Res. Inst. Math. Sci., 39 (2003), 117-164.  doi: 10.2977/prims/1145476150.  Google Scholar

[36]

G. B. ZhangW. T. Li and Z. C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[37]

L. ZhangW. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28 (2016), 189-224.  doi: 10.1007/s10884-014-9416-8.  Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[11]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[12]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[18]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[19]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[20]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (118)
  • HTML views (75)
  • Cited by (2)

Other articles
by authors

[Back to Top]