-
Previous Article
Stability for thermoelastic plates with two temperatures
- DCDS Home
- This Issue
-
Next Article
Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application
Topological entropy on subsets for fixed-point free flows
Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, China |
By considering all possible reparametrizations of the flows instead of the time-$1$ maps, we introduce Bowen topological entropy and local entropy on subsets for flows. Through handling techniques for reparametrization balls, we prove a covering lemma for fixed-point free flows and then prove a variational principle.
References:
[1] |
R. Bowen,
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[2] |
R. Bowen,
Periodic orbits for hyperbolicf lows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[3] |
R. Bowen,
Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[4] |
D. J. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[5] |
P. Mattila,
Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511623813. |
[6] |
Ya. B. Pesin,
Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997.
doi: 10.7208/chicago/9780226662237.001.0001. |
[7] |
W. X. Sun,
Measure-theoretic entropy for flows, Science in China Series A: Mathematics, 40 (1997), 725-731.
doi: 10.1007/BF02878695. |
[8] |
W. X. Sun and E. Vargas,
Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 315-333.
doi: 10.1007/BF01239009. |
[9] |
R. F. Thomas,
Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[10] |
R. F. Thomas,
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.
doi: 10.1090/S0002-9947-1990-1010414-5. |
show all references
References:
[1] |
R. Bowen,
Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.
doi: 10.1090/S0002-9947-1971-0274707-X. |
[2] |
R. Bowen,
Periodic orbits for hyperbolicf lows, Amer. J. Math., 94 (1972), 1-30.
doi: 10.2307/2373590. |
[3] |
R. Bowen,
Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.
doi: 10.1090/S0002-9947-1973-0338317-X. |
[4] |
D. J. Feng and W. Huang,
Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.
doi: 10.1016/j.jfa.2012.07.010. |
[5] |
P. Mattila,
Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.
doi: 10.1017/CBO9780511623813. |
[6] |
Ya. B. Pesin,
Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997.
doi: 10.7208/chicago/9780226662237.001.0001. |
[7] |
W. X. Sun,
Measure-theoretic entropy for flows, Science in China Series A: Mathematics, 40 (1997), 725-731.
doi: 10.1007/BF02878695. |
[8] |
W. X. Sun and E. Vargas,
Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 315-333.
doi: 10.1007/BF01239009. |
[9] |
R. F. Thomas,
Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.
doi: 10.1017/S0143385700004235. |
[10] |
R. F. Thomas,
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.
doi: 10.1090/S0002-9947-1990-1010414-5. |
[1] |
Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827 |
[2] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[3] |
Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016 |
[4] |
Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937 |
[5] |
César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577 |
[6] |
Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533 |
[7] |
Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243 |
[8] |
Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65 |
[9] |
Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017 |
[10] |
Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237 |
[11] |
Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018 |
[12] |
Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic and Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171 |
[13] |
Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489 |
[14] |
Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367 |
[15] |
José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301 |
[16] |
Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226 |
[17] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[18] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[19] |
Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625 |
[20] |
Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]