December  2017, 37(12): 6319-6331. doi: 10.3934/dcds.2017273

Topological entropy on subsets for fixed-point free flows

Department of Mathematics, Nanjing University, Nanjing, Jiangsu 210093, China

* Corresponding author

Received  January 2017 Revised  July 2017 Published  August 2017

Fund Project: The first author was supported by the National Nature Science Foundation of China (Grant No. 10901080,11271191 and 11431012) and CSC. The third author was supported by the National Nature Science Foundation of China (Grant No. 11471157)

By considering all possible reparametrizations of the flows instead of the time-$1$ maps, we introduce Bowen topological entropy and local entropy on subsets for flows. Through handling techniques for reparametrization balls, we prove a covering lemma for fixed-point free flows and then prove a variational principle.

Citation: Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273
References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

R. Bowen, Periodic orbits for hyperbolicf lows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[3]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[4]

D. J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[5]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. doi: 10.1017/CBO9780511623813.  Google Scholar

[6]

Ya. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[7]

W. X. Sun, Measure-theoretic entropy for flows, Science in China Series A: Mathematics, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[8]

W. X. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[9]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[10]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

show all references

References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

R. Bowen, Periodic orbits for hyperbolicf lows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.  Google Scholar

[3]

R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.  Google Scholar

[4]

D. J. Feng and W. Huang, Variational principles for topological entropies of subsets, J. Funct. Anal., 263 (2012), 2228-2254.  doi: 10.1016/j.jfa.2012.07.010.  Google Scholar

[5]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995. doi: 10.1017/CBO9780511623813.  Google Scholar

[6]

Ya. B. Pesin, Dimension Theory in Dynamical Systems. Contemporary Views and Applications, University of Chicago Press, Chicago, IL, 1997. doi: 10.7208/chicago/9780226662237.001.0001.  Google Scholar

[7]

W. X. Sun, Measure-theoretic entropy for flows, Science in China Series A: Mathematics, 40 (1997), 725-731.  doi: 10.1007/BF02878695.  Google Scholar

[8]

W. X. Sun and E. Vargas, Entropy of flows, revisited, Bol. Soc. Brasil. Mat. (N.S.), 30 (1999), 315-333.  doi: 10.1007/BF01239009.  Google Scholar

[9]

R. F. Thomas, Entropy of expansive flows, Ergod. Th. Dynam. Sys., 7 (1987), 611-625.  doi: 10.1017/S0143385700004235.  Google Scholar

[10]

R. F. Thomas, Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., 319 (1990), 601-618.  doi: 10.1090/S0002-9947-1990-1010414-5.  Google Scholar

[1]

Michał Misiurewicz. On Bowen's definition of topological entropy. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 827-833. doi: 10.3934/dcds.2004.10.827

[2]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[3]

Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016

[4]

Artur O. Lopes, Elismar R. Oliveira. Entropy and variational principles for holonomic probabilities of IFS. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 937-955. doi: 10.3934/dcds.2009.23.937

[5]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[6]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic & Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[7]

Daniel J. Thompson. A criterion for topological entropy to decrease under normalised Ricci flow. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1243-1248. doi: 10.3934/dcds.2011.30.1243

[8]

Gunhild A. Reigstad. Numerical network models and entropy principles for isothermal junction flow. Networks & Heterogeneous Media, 2014, 9 (1) : 65-95. doi: 10.3934/nhm.2014.9.65

[9]

Michael Brandenbursky, Michał Marcinkowski. Entropy and quasimorphisms. Journal of Modern Dynamics, 2019, 15: 143-163. doi: 10.3934/jmd.2019017

[10]

Wenxiang Sun, Cheng Zhang. Zero entropy versus infinite entropy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1237-1242. doi: 10.3934/dcds.2011.30.1237

[11]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[12]

Yunkyong Hyon, José A. Carrillo, Qiang Du, Chun Liu. A maximum entropy principle based closure method for macro-micro models of polymeric materials. Kinetic & Related Models, 2008, 1 (2) : 171-184. doi: 10.3934/krm.2008.1.171

[13]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[14]

Ricardo Almeida, Agnieszka B. Malinowska. Fractional variational principle of Herglotz. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2367-2381. doi: 10.3934/dcdsb.2014.19.2367

[15]

José M. Amigó, Karsten Keller, Valentina A. Unakafova. On entropy, entropy-like quantities, and applications. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3301-3343. doi: 10.3934/dcdsb.2015.20.3301

[16]

Ping Huang, Ercai Chen, Chenwei Wang. Entropy formulae of conditional entropy in mean metrics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5129-5144. doi: 10.3934/dcds.2018226

[17]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[18]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[19]

Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461

[20]

Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks & Heterogeneous Media, 2008, 3 (1) : 1-41. doi: 10.3934/nhm.2008.3.1

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (17)
  • Cited by (0)

Other articles
by authors

[Back to Top]