December  2017, 37(12): 6333-6352. doi: 10.3934/dcds.2017274

Stability for thermoelastic plates with two temperatures

1. 

Department of Mathematics, UPC Terrassa, Colom 11, 08222 Terrassa, Spain

2. 

Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany

* Corresponding author

Received  January 2017 Revised  June 2017 Published  August 2017

Fund Project: The first author is supported by the project "Análisis Matemático de Problemas de la Termomecánica" (MTM2016-74934-P) (AEI/FEDER, UE) of the Spanish Ministry of Economy and Competitiveness

We investigate the well-posedness, the exponential stability, or the lack thereof, of thermoelastic systems in materials where, in contrast to classical thermoelastic models for Kirchhoff type plates, two temperatures are involved, related by an elliptic equation. The arising initial boundary value problems for different boundary conditions deal with systems of partial differential equations involving Schrödinger like equations, hyperbolic and elliptic equations, which have a different character compared to the classical one with the usual single temperature. Depending on the model -with Fourier or with Cattaneo type heat conduction -we obtain exponential resp. non-exponential stability, thus providing another examples where the change from Fourier's to Cattaneo's law leads to a loss of exponential stability.

Citation: Ramón Quintanilla, Reinhard Racke. Stability for thermoelastic plates with two temperatures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6333-6352. doi: 10.3934/dcds.2017274
References:
[1]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Instit. Mat. Univ. Trieste Suppl., 28 (1996), 1-28. Google Scholar

[2]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627. Google Scholar

[3]

P. J. ChenM. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Appl. Math. Phys. (ZAMP), 19 (1968), 969-970. doi: 10.1007/BF01602278. Google Scholar

[4]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112. Google Scholar

[5]

R. Denk and R. Racke, $L^p$ resolvent estimates and time decay for generalized thermoelastic plate equations, Electronic J. Differential Equations, 48 (2006), 1-16. Google Scholar

[6]

R. DenkR. Racke and Y. Shibata, $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Advances Differential Equations, 14 (2009), 685-715. Google Scholar

[7]

R. DenkR. Racke and Y. Shibata, Local energy decay estimate of solutions to the thermoelastic plate equations in two-and three-dimensional exterior domains, J. Analysis Appl., 29 (2010), 21-62. doi: 10.4171/ZAA/1396. Google Scholar

[8]

H. D. Fernández Sare and J. E. Muñoz Rivera, Optimal rates of decay in 2-d thermoelasticity with second sound, J. Math. Phys. , 53 (2012), 073509, 13 pp. doi: 10.1063/1.4734239. Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems --Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2. Google Scholar

[10]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1. Google Scholar

[11]

F. Huang, Characteristic conditions for exponential staility of linear dynamical systems in Hilbert spaces, Ann. Diff. Equations, 1 (1985), 43-56. Google Scholar

[12]

B. Kabil, Zur Asymptotik bei Resonator-Gleichungen, Diplomarbeit (diploma thesis), University of Konstanz, 2011.Google Scholar

[13]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermoelastic equations, Advances Differential Equations, 3 (1998), 387-416. Google Scholar

[15]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, ESAIM, Proc., 4 (1998), 199-222. doi: 10.1051/proc:1998029. Google Scholar

[16]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann boundary conditions, Abstract Appl. Anal., 3 (1998), 153-169. doi: 10.1155/S1085337598000487. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Annali Scuola Norm. Sup. Pisa, 27 (1998), 457-482. Google Scholar

[18]

M. C. LeseduarteR. Quintanilla and R. Racke, On non-exponential decay in generalized thermoelasticity with two temperatures, Appl. Math. Letters, 70 (2017), 18-25. doi: 10.1016/j.aml.2017.02.020. Google Scholar

[19]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. angew. Math. Phys., 48 (1997), 885-904. doi: 10.1007/s000330050071. Google Scholar

[20]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Res. Notes Math., 1999. Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058. Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127 (1996), 454-483. doi: 10.1006/jdeq.1996.0078. Google Scholar

[23]

J. Prüß, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112. Google Scholar

[24]

R. Quintanilla, Exponential stability and uniqueness in thermoelasticity with two temperatures, Dynamics Continous, Discrete Impulsive Sys., Ser. A: Math. Anal., 11 (2004), 57-68. Google Scholar

[25]

R. Quintanilla, On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures, Acta Mechanica, 168 (2004), 61-73. doi: 10.1007/s00707-004-0073-6. Google Scholar

[26]

R. Quintanilla and R. Racke, Qualitative aspects of solutions in resonators, Arch. Mech., 60 (2008), 345-360. Google Scholar

[27]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators, Arch. Mech., 63 (2011), 429-435. Google Scholar

[28]

R. Racke, Thermoelasticity, Chapter 4 in: Handbook of Differential Equations, Evolutionary Equations. Eds.: C.M. Dafermos, M. Pokorný. Elsevier, 5 (2009), 315-420.Google Scholar

[29]

R. Racke, Heat conduction in elastic systems: Fourier versus Cattaneo, Proc. International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Skukuza, South Africa, (2015), 356-360. Google Scholar

[30]

R. Racke and Y. Ueda, Dissipative structures for thermoelastic plate equations in $\mathbf{R}^n$, Advances. Differential Equations, 21 (2016), 601-630. Google Scholar

[31]

X. Yang, Generalized Form of Hurwitz-Routh criterion and Hopf bifurcation of higher order, Appl. Math. Letters, 15 (2002), 615-621. doi: 10.1016/S0893-9659(02)80014-3. Google Scholar

[32]

H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71 (2006), 383-390. doi: 10.1093/imamat/hxh101. Google Scholar

show all references

References:
[1]

G. Avalos and I. Lasiecka, Exponential stability of a thermoelastic system without mechanical dissipation, Rend. Instit. Mat. Univ. Trieste Suppl., 28 (1996), 1-28. Google Scholar

[2]

P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 19 (1968), 614-627. Google Scholar

[3]

P. J. ChenM. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Appl. Math. Phys. (ZAMP), 19 (1968), 969-970. doi: 10.1007/BF01602278. Google Scholar

[4]

P. J. ChenM. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 20 (1969), 107-112. Google Scholar

[5]

R. Denk and R. Racke, $L^p$ resolvent estimates and time decay for generalized thermoelastic plate equations, Electronic J. Differential Equations, 48 (2006), 1-16. Google Scholar

[6]

R. DenkR. Racke and Y. Shibata, $L_p$ theory for the linear thermoelastic plate equations in bounded and exterior domains, Advances Differential Equations, 14 (2009), 685-715. Google Scholar

[7]

R. DenkR. Racke and Y. Shibata, Local energy decay estimate of solutions to the thermoelastic plate equations in two-and three-dimensional exterior domains, J. Analysis Appl., 29 (2010), 21-62. doi: 10.4171/ZAA/1396. Google Scholar

[8]

H. D. Fernández Sare and J. E. Muñoz Rivera, Optimal rates of decay in 2-d thermoelasticity with second sound, J. Math. Phys. , 53 (2012), 073509, 13 pp. doi: 10.1063/1.4734239. Google Scholar

[9]

H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems --Cattaneo versus Fourier law, Arch. Rational Mech. Anal., 194 (2009), 221-251. doi: 10.1007/s00205-009-0220-2. Google Scholar

[10]

L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer. Math. Soc., 236 (1978), 385-394. doi: 10.1090/S0002-9947-1978-0461206-1. Google Scholar

[11]

F. Huang, Characteristic conditions for exponential staility of linear dynamical systems in Hilbert spaces, Ann. Diff. Equations, 1 (1985), 43-56. Google Scholar

[12]

B. Kabil, Zur Asymptotik bei Resonator-Gleichungen, Diplomarbeit (diploma thesis), University of Konstanz, 2011.Google Scholar

[13]

J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal., 23 (1992), 889-899. doi: 10.1137/0523047. Google Scholar

[14]

I. Lasiecka and R. Triggiani, Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermoelastic equations, Advances Differential Equations, 3 (1998), 387-416. Google Scholar

[15]

I. Lasiecka and R. Triggiani, Analyticity, and lack thereof, of thermo-elastic semigroups, ESAIM, Proc., 4 (1998), 199-222. doi: 10.1051/proc:1998029. Google Scholar

[16]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with coupled hinged/Neumann boundary conditions, Abstract Appl. Anal., 3 (1998), 153-169. doi: 10.1155/S1085337598000487. Google Scholar

[17]

I. Lasiecka and R. Triggiani, Analyticity of thermo-elastic semigroups with free boundary conditions, Annali Scuola Norm. Sup. Pisa, 27 (1998), 457-482. Google Scholar

[18]

M. C. LeseduarteR. Quintanilla and R. Racke, On non-exponential decay in generalized thermoelasticity with two temperatures, Appl. Math. Letters, 70 (2017), 18-25. doi: 10.1016/j.aml.2017.02.020. Google Scholar

[19]

K. Liu and Z. Liu, Exponential stability and analyticity of abstract linear thermoelastic systems, Z. angew. Math. Phys., 48 (1997), 885-904. doi: 10.1007/s000330050071. Google Scholar

[20]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, Chapman & Hall/CRC Res. Notes Math., 1999. Google Scholar

[21]

J. E. Muñoz Rivera and R. Racke, Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelastic type, SIAM J. Math. Anal., 26 (1995), 1547-1563. doi: 10.1137/S0036142993255058. Google Scholar

[22]

J. E. Muñoz Rivera and R. Racke, Large solutions and smoothing properties for nonlinear thermoelastic systems, J. Differential Equations, 127 (1996), 454-483. doi: 10.1006/jdeq.1996.0078. Google Scholar

[23]

J. Prüß, On the spectrum of $C_0$-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857. doi: 10.2307/1999112. Google Scholar

[24]

R. Quintanilla, Exponential stability and uniqueness in thermoelasticity with two temperatures, Dynamics Continous, Discrete Impulsive Sys., Ser. A: Math. Anal., 11 (2004), 57-68. Google Scholar

[25]

R. Quintanilla, On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures, Acta Mechanica, 168 (2004), 61-73. doi: 10.1007/s00707-004-0073-6. Google Scholar

[26]

R. Quintanilla and R. Racke, Qualitative aspects of solutions in resonators, Arch. Mech., 60 (2008), 345-360. Google Scholar

[27]

R. Quintanilla and R. Racke, Addendum to: Qualitative aspects of solutions in resonators, Arch. Mech., 63 (2011), 429-435. Google Scholar

[28]

R. Racke, Thermoelasticity, Chapter 4 in: Handbook of Differential Equations, Evolutionary Equations. Eds.: C.M. Dafermos, M. Pokorný. Elsevier, 5 (2009), 315-420.Google Scholar

[29]

R. Racke, Heat conduction in elastic systems: Fourier versus Cattaneo, Proc. International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Skukuza, South Africa, (2015), 356-360. Google Scholar

[30]

R. Racke and Y. Ueda, Dissipative structures for thermoelastic plate equations in $\mathbf{R}^n$, Advances. Differential Equations, 21 (2016), 601-630. Google Scholar

[31]

X. Yang, Generalized Form of Hurwitz-Routh criterion and Hopf bifurcation of higher order, Appl. Math. Letters, 15 (2002), 615-621. doi: 10.1016/S0893-9659(02)80014-3. Google Scholar

[32]

H. M. Youssef, Theory of two-temperature-generalized thermoelasticity, IMA J. Appl. Math., 71 (2006), 383-390. doi: 10.1093/imamat/hxh101. Google Scholar

[1]

Ahmad Makki, Alain Miranville, Georges Sadaka. On the nonconserved Caginalp phase-field system based on the Maxwell-Cattaneo law with two temperatures and logarithmic potentials. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1341-1365. doi: 10.3934/dcdsb.2019019

[2]

Tohru Nakamura, Shuichi Kawashima. Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law. Kinetic & Related Models, 2018, 11 (4) : 795-819. doi: 10.3934/krm.2018032

[3]

María Teresa González Montesinos, Francisco Ortegón Gallego. The evolution thermistor problem under the Wiedemann-Franz law with metallic conduction. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 901-923. doi: 10.3934/dcdsb.2007.8.901

[4]

Alain Miranville. Asymptotic behavior of the conserved Caginalp phase-field system based on the Maxwell-Cattaneo law. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1971-1987. doi: 10.3934/cpaa.2014.13.1971

[5]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[6]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[7]

Darko Mitrovic. Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks & Heterogeneous Media, 2010, 5 (1) : 163-188. doi: 10.3934/nhm.2010.5.163

[8]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations & Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[9]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

[10]

José A. Carrillo, Yanghong Huang. Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinetic & Related Models, 2017, 10 (1) : 171-192. doi: 10.3934/krm.2017007

[11]

Giovanna Bonfanti, Fabio Luterotti. A well-posedness result for irreversible phase transitions with a nonlinear heat flux law. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 331-351. doi: 10.3934/dcdss.2013.6.331

[12]

Afaf Bouharguane. On the instability of a nonlocal conservation law. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 419-426. doi: 10.3934/dcdss.2012.5.419

[13]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[14]

JÓzsef Balogh, Hoi Nguyen. A general law of large permanent. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5285-5297. doi: 10.3934/dcds.2017229

[15]

. Adimurthi, Siddhartha Mishra, G.D. Veerappa Gowda. Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Networks & Heterogeneous Media, 2007, 2 (1) : 127-157. doi: 10.3934/nhm.2007.2.127

[16]

Ambroise Vest. On the structural properties of an efficient feedback law. Evolution Equations & Control Theory, 2013, 2 (3) : 543-556. doi: 10.3934/eect.2013.2.543

[17]

M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221

[18]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[19]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[20]

Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97-116. doi: 10.3934/mcrf.2019005

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (21)
  • Cited by (0)

Other articles
by authors

[Back to Top]