• Previous Article
    Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation
  • DCDS Home
  • This Issue
  • Next Article
    Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case
December  2017, 37(12): 6437-6470. doi: 10.3934/dcds.2017279

Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China

Corresponding author: Ruizhao Zi

Received  April 2017 Published  August 2017

This paper is dedicated to the global well-posedness issue of the compressible Oldroyd-B model in the whole space $\mathbb{R}^d$ with $d≥2 $. By exploiting the intrinsic structure of the system, we prove that if the initial data is small enough (depending on the coupling parameter), this set of equations admits a unique global solution in a certain critical Besov space. This result partially improves the previous work by Fang and the author [J. Differential Equations, 256(2014), 2559-2602].

Citation: Ruizhao Zi. Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6437-6470. doi: 10.3934/dcds.2017279
References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Annales Scinentifiques de l'école Normale Supérieure, 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[3]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.  doi: 10.4171/RMI/229.  Google Scholar

[4]

M. Cannone, Y. Meyer and F. Planchon, Solutions Autosimilaires des Équations de Navier-Stokes, in Séminaire "Équations aux Dérivées Partielles" de l'École Polytechnique, Exposé Ⅷ, 1993-1994, Palaiseau, 1994. doi: 10.1108/09533239410052824.  Google Scholar

[5]

J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, (2004), 53-135.   Google Scholar

[6]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-228.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[7]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.  doi: 10.1137/S0036141099359317.  Google Scholar

[8]

Q. L. Chen and C. X. Miao, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Analysis, 68 (2008), 1928-1939.  doi: 10.1016/j.na.2007.01.042.  Google Scholar

[9]

P. Constantin and M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Rational Mech. Anal., 206 (2012), 725-740.  doi: 10.1007/s00205-012-0537-0.  Google Scholar

[10]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[11]

R. Danchin, A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations, Sci. China Math., 55 (2012), 245-275.  doi: 10.1007/s11425-011-4357-8.  Google Scholar

[12]

Y. Du, C. Liu and Q. T. Zhang, A blow-up critirion for 3D compressible viscoelasticity, arXiv: 1202.3693v1 [math. AP] 16 Feb 2012. Google Scholar

[13]

D.Y. FangM. Hieber and R. Z. Zi, Global existence results for Oldroyd-B Fluids in exterior domains: The case of non-small coupling parameters, Math. Ann., 357 (2013), 687-709.  doi: 10.1007/s00208-013-0914-5.  Google Scholar

[14]

D. Y. Fang and R. Z. Zi, Strong solutions of 3D compressible Oldroyd-B fluids, Math. Meth. Appl. Sci., 36 (2013), 1423-1439.  doi: 10.1002/mma.2695.  Google Scholar

[15]

D. Y. Fang and R. Z. Zi, Incompressible limit of Oldroyd-B fluids in the whole space, J. Differential Equations, 256 (2014), 2559-2602.  doi: 10.1016/j.jde.2014.01.017.  Google Scholar

[16]

E. Fernández-CaraF. Guillén and R. Ortega, Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 1-29.   Google Scholar

[17]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem Ⅰ, Arch. Ration. Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[18]

C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990), 849-869.  doi: 10.1016/0362-546X(90)90097-Z.  Google Scholar

[19]

C. GuillopéZ. Salloum and R. Talhouk, Regular flows of weakly compressible viscoelastic fluids and the incompressible limit, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1001-1028.  doi: 10.3934/dcdsb.2010.14.1001.  Google Scholar

[20]

M. HieberY. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains, J. Differential Equations, 252 (2012), 2617-2629.  doi: 10.1016/j.jde.2011.09.001.  Google Scholar

[21]

X. P. Hu and F. H. Lin, On the Cauchy problem for two dimensional incompressible viscoelastic flows, arXiv: 1601.03497. Google Scholar

[22]

X. P. Hu and D. H. Wang, Formation of sigularity for compressible viscoelasticity, arXiv: 1109.1332v1 [math. AP] 7 Sep 2011. Google Scholar

[23]

T. Kato, Strong $L^p $-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[24]

H. Koch and D. Tataru, Well-posedness for the Navier--Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[25]

R. KupfermanC. Mangoubi and E. S. Titi, A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime, Commun. Math. Sci., 6 (2008), 235-256.  doi: 10.4310/CMS.2008.v6.n1.a12.  Google Scholar

[26]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chinese Ann. Math. Ser. B, 27 (2006), 565-580.  doi: 10.1007/s11401-005-0041-z.  Google Scholar

[27]

Z. Lei, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198 (2010), 13-37.  doi: 10.1007/s00205-010-0346-2.  Google Scholar

[28]

Z. LeiC. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[29]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[30]

Z. LeiN. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[31]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.  doi: 10.1137/040618813.  Google Scholar

[32]

F. H. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.  Google Scholar

[33]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.  doi: 10.1002/cpa.20219.  Google Scholar

[34]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.  doi: 10.1142/S0252959900000170.  Google Scholar

[35]

L. Molinet and R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Diff. Equations Appl., 11 (2004), 349-359.  doi: 10.1007/s00030-004-1073-x.  Google Scholar

[36]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. Roy. Soc. London., 245 (1958), 278-297.  doi: 10.1098/rspa.1958.0083.  Google Scholar

[37]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Analysis, 72 (2010), 3222-3234.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[38]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrum, Arch. Rational Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[39]

R. Talhouk, Analyse Mathématique de Quelques Écoulements de Fluides Viscoélastiques, Thèse, Université Paris-Sud, 1994. Google Scholar

[40]

F. Weissler, The Navier-Stokes initial value problem in $L^p $, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

[41]

T. Zhang and D. Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p $ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.  doi: 10.1137/110851742.  Google Scholar

[42]

R. Z. ZiD. Y. Fang and T. Zhang, Global solution to the incompressible Oldroyd-B model in the critical $ L^p$ framework: the case of the non-small coupling parameter, Arch. Rational Mech. Anal., 213 (2014), 651-687.  doi: 10.1007/s00205-014-0732-2.  Google Scholar

show all references

References:
[1]

H. Bahouri, J. -Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 343. Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.  Google Scholar

[2]

J.-M. Bony, Calcul symbolique et propagation des singularités pour équations aux dérivées partielles nonlinéaires, Annales Scinentifiques de l'école Normale Supérieure, 14 (1981), 209-246.  doi: 10.24033/asens.1404.  Google Scholar

[3]

M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana, 13 (1997), 515-541.  doi: 10.4171/RMI/229.  Google Scholar

[4]

M. Cannone, Y. Meyer and F. Planchon, Solutions Autosimilaires des Équations de Navier-Stokes, in Séminaire "Équations aux Dérivées Partielles" de l'École Polytechnique, Exposé Ⅷ, 1993-1994, Palaiseau, 1994. doi: 10.1108/09533239410052824.  Google Scholar

[5]

J.-Y. Chemin, Localization in Fourier space and Navier-Stokes system, Phase Space Analysis of Partial Differential Equations, Proceedings 2004, CRM series, Pisa, (2004), 53-135.   Google Scholar

[6]

J.-Y. Chemin and N. Lerner, Flot de champs de vecteurs non Lipschitziens et équations de Navier-Stokes, J. Differential Equations, 121 (1995), 314-228.  doi: 10.1006/jdeq.1995.1131.  Google Scholar

[7]

J. Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids, SIAM J. Math. Anal., 33 (2001), 84-112.  doi: 10.1137/S0036141099359317.  Google Scholar

[8]

Q. L. Chen and C. X. Miao, Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces, Nonlinear Analysis, 68 (2008), 1928-1939.  doi: 10.1016/j.na.2007.01.042.  Google Scholar

[9]

P. Constantin and M. Kliegl, Note on global regularity for two-dimensional Oldroyd-B fluids with diffusive stress, Arch. Rational Mech. Anal., 206 (2012), 725-740.  doi: 10.1007/s00205-012-0537-0.  Google Scholar

[10]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math., 141 (2000), 579-614.  doi: 10.1007/s002220000078.  Google Scholar

[11]

R. Danchin, A survey on Fourier analysis methods for solving the compressible Navier-Stokes equations, Sci. China Math., 55 (2012), 245-275.  doi: 10.1007/s11425-011-4357-8.  Google Scholar

[12]

Y. Du, C. Liu and Q. T. Zhang, A blow-up critirion for 3D compressible viscoelasticity, arXiv: 1202.3693v1 [math. AP] 16 Feb 2012. Google Scholar

[13]

D.Y. FangM. Hieber and R. Z. Zi, Global existence results for Oldroyd-B Fluids in exterior domains: The case of non-small coupling parameters, Math. Ann., 357 (2013), 687-709.  doi: 10.1007/s00208-013-0914-5.  Google Scholar

[14]

D. Y. Fang and R. Z. Zi, Strong solutions of 3D compressible Oldroyd-B fluids, Math. Meth. Appl. Sci., 36 (2013), 1423-1439.  doi: 10.1002/mma.2695.  Google Scholar

[15]

D. Y. Fang and R. Z. Zi, Incompressible limit of Oldroyd-B fluids in the whole space, J. Differential Equations, 256 (2014), 2559-2602.  doi: 10.1016/j.jde.2014.01.017.  Google Scholar

[16]

E. Fernández-CaraF. Guillén and R. Ortega, Some theoretical results concerning non-Newtonian fluids of the Oldroyd kind, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 1-29.   Google Scholar

[17]

H. Fujita and T. Kato, On the Navier-Stokes initial value problem Ⅰ, Arch. Ration. Mech. Anal., 16 (1964), 269-315.  doi: 10.1007/BF00276188.  Google Scholar

[18]

C. Guillopé and J. C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15 (1990), 849-869.  doi: 10.1016/0362-546X(90)90097-Z.  Google Scholar

[19]

C. GuillopéZ. Salloum and R. Talhouk, Regular flows of weakly compressible viscoelastic fluids and the incompressible limit, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1001-1028.  doi: 10.3934/dcdsb.2010.14.1001.  Google Scholar

[20]

M. HieberY. Naito and Y. Shibata, Global existence results for Oldroyd-B fluids in exterior domains, J. Differential Equations, 252 (2012), 2617-2629.  doi: 10.1016/j.jde.2011.09.001.  Google Scholar

[21]

X. P. Hu and F. H. Lin, On the Cauchy problem for two dimensional incompressible viscoelastic flows, arXiv: 1601.03497. Google Scholar

[22]

X. P. Hu and D. H. Wang, Formation of sigularity for compressible viscoelasticity, arXiv: 1109.1332v1 [math. AP] 7 Sep 2011. Google Scholar

[23]

T. Kato, Strong $L^p $-solutions of the Navier-Stokes equation in $ \mathbb{R}^m$, with applications to weak solutions, Math. Z., 187 (1984), 471-480.  doi: 10.1007/BF01174182.  Google Scholar

[24]

H. Koch and D. Tataru, Well-posedness for the Navier--Stokes equations, Adv. Math., 157 (2001), 22-35.  doi: 10.1006/aima.2000.1937.  Google Scholar

[25]

R. KupfermanC. Mangoubi and E. S. Titi, A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime, Commun. Math. Sci., 6 (2008), 235-256.  doi: 10.4310/CMS.2008.v6.n1.a12.  Google Scholar

[26]

Z. Lei, Global existence of classical solutions for some Oldroyd-B model via the incompressible limit, Chinese Ann. Math. Ser. B, 27 (2006), 565-580.  doi: 10.1007/s11401-005-0041-z.  Google Scholar

[27]

Z. Lei, On 2D viscoelasticity with small strain, Arch. Ration. Mech. Anal., 198 (2010), 13-37.  doi: 10.1007/s00205-010-0346-2.  Google Scholar

[28]

Z. LeiC. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain, Commun. Math. Sci., 5 (2007), 595-616.  doi: 10.4310/CMS.2007.v5.n3.a5.  Google Scholar

[29]

Z. LeiC. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids, Arch. Ration. Mech. Anal., 188 (2008), 371-398.  doi: 10.1007/s00205-007-0089-x.  Google Scholar

[30]

Z. LeiN. Masmoudi and Y. Zhou, Remarks on the blowup criteria for Oldroyd models, J. Differential Equations, 248 (2010), 328-341.  doi: 10.1016/j.jde.2009.07.011.  Google Scholar

[31]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit, SIAM J. Math. Anal., 37 (2005), 797-814.  doi: 10.1137/040618813.  Google Scholar

[32]

F. H. LinC. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm. Pure Appl. Math., 58 (2005), 1437-1471.  doi: 10.1002/cpa.20074.  Google Scholar

[33]

F. H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system, Comm. Pure Appl. Math., 61 (2008), 539-558.  doi: 10.1002/cpa.20219.  Google Scholar

[34]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows, Chinese Ann. Math. Ser. B, 21 (2000), 131-146.  doi: 10.1142/S0252959900000170.  Google Scholar

[35]

L. Molinet and R. Talhouk, On the global and periodic regular flows of viscoelastic fluids with a differential constitutive law, Nonlinear Diff. Equations Appl., 11 (2004), 349-359.  doi: 10.1007/s00030-004-1073-x.  Google Scholar

[36]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. Roy. Soc. London., 245 (1958), 278-297.  doi: 10.1098/rspa.1958.0083.  Google Scholar

[37]

J. Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluid system, Nonlinear Analysis, 72 (2010), 3222-3234.  doi: 10.1016/j.na.2009.12.022.  Google Scholar

[38]

J. Z. Qian and Z. F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrum, Arch. Rational Mech. Anal., 198 (2010), 835-868.  doi: 10.1007/s00205-010-0351-5.  Google Scholar

[39]

R. Talhouk, Analyse Mathématique de Quelques Écoulements de Fluides Viscoélastiques, Thèse, Université Paris-Sud, 1994. Google Scholar

[40]

F. Weissler, The Navier-Stokes initial value problem in $L^p $, Arch. Rational Mech. Anal., 74 (1980), 219-230.  doi: 10.1007/BF00280539.  Google Scholar

[41]

T. Zhang and D. Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p $ framework, SIAM J. Math. Anal., 44 (2012), 2266-2288.  doi: 10.1137/110851742.  Google Scholar

[42]

R. Z. ZiD. Y. Fang and T. Zhang, Global solution to the incompressible Oldroyd-B model in the critical $ L^p$ framework: the case of the non-small coupling parameter, Arch. Rational Mech. Anal., 213 (2014), 651-687.  doi: 10.1007/s00205-014-0732-2.  Google Scholar

[1]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[2]

Jihong Zhao, Ting Zhang, Qiao Liu. Global well-posedness for the dissipative system modeling electro-hydrodynamics with large vertical velocity component in critical Besov space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 555-582. doi: 10.3934/dcds.2015.35.555

[3]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[4]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[5]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[6]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[7]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[8]

Haibo Cui, Qunyi Bie, Zheng-An Yao. Well-posedness in critical spaces for a multi-dimensional compressible viscous liquid-gas two-phase flow model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1395-1410. doi: 10.3934/dcdsb.2018156

[9]

Matthias Hieber. Remarks on the theory of Oldroyd-B fluids in exterior domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1307-1313. doi: 10.3934/dcdss.2013.6.1307

[10]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[11]

Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495

[12]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[13]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[14]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[15]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[16]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[17]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[18]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[19]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[20]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (13)
  • Cited by (0)

Other articles
by authors

[Back to Top]