January  2018, 38(1): 1-41. doi: 10.3934/dcds.2018001

Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds

Universidad Politécnica de Madrid, ETSI Navales, Avd. Arco de la Victoria 4, 28040 Madrid

Received  April 2016 Revised  July 2017 Published  September 2017

Fund Project: The author was partially supported by research grant ERC 301179, and by INEM

We present a new strategy for proving the Ambrose conjecture, a global version of the Cartan local lemma. We introduce the concepts of linking curves, unequivocal sets and sutured manifolds, and show that any sutured manifold satisfies the Ambrose conjecture. We then prove that the set of sutured Riemannian manifolds contains a residual set of the metrics on a given smooth manifold of dimension $3$.

Citation: Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 1-41. doi: 10.3934/dcds.2018001
References:
[1]

W. Ambrose, Parallel translation of riemannian curvature, Ann. of Math(2), 64 (1956), 337-363.  doi: 10.2307/1969978.  Google Scholar

[2]

P. Angulo, Cut and Conjugate Points of the Exponential Map, with Applications Ph. D. Dissertation at Universidad Autónoma de Madrid, 2014, arXiv: 1411.3933 Google Scholar

[3]

P. Angulo and L. Guijarro, Balanced split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 40 (2011), 223-252.  doi: 10.1007/s00526-010-0338-y.  Google Scholar

[4]

R. A. Blumenthal and J. J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, C. R. Acad. Sci. Paris Sér. I Math, 305 (1987), 647-651.  doi: 10.1007/BF00182117.  Google Scholar

[5]

M. A. Buchner, Stability of the cut locus in dimensions less than or equal to 6, Invent. Math., 43 (1977), 199-231.   Google Scholar

[6]

É. Cartan, Leçons sur la Géométrie des Espaces de Riemann (French) 2d ed. Gauthier-Villars, Paris, 1951. Google Scholar

[7]

M. Castelpietra and L. Rifford, Regularity Properties of the Distance Functions to Conjugate and Cut Loci for Viscosity Solutions of Hamilton-Jacobi Equations and Applications in Riemannian Geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695–718. arXiv: 0812.4107 (2008). doi: 10.1051/cocv/2009020.  Google Scholar

[8]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. Google Scholar

[9]

P. Griffiths and J. Wolf, Complete maps and differentiable coverings, Michigan Math. J., 10 (1963), 253-255.  doi: 10.1307/mmj/1028998907.  Google Scholar

[10]

B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math.(2), 171 (2010), 109-167.  doi: 10.4007/annals.2010.171.109.  Google Scholar

[11]

J. J. Hebda, Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem, Indiana Univ. Math. J., 31 (1982), 17-26.  doi: 10.1512/iumj.1982.31.31003.  Google Scholar

[12]

J. J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987), 559-572.  doi: 10.1090/S0002-9947-1987-0869221-6.  Google Scholar

[13]

J. J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994), 621-642.  doi: 10.4310/jdg/1214455780.  Google Scholar

[14]

J. J. Hebda, Heterogeneous Riemannian manifolds, Int. J. Math. Math. Sci. (2010), Article ID 187232, 7 pp. Google Scholar

[15]

N. Hicks, A theorem on affine connexions, Illinois J. Math., 3 (1959), 242-254.   Google Scholar

[16]

M. Hirsch, Differential Topology Graduate Texts in Mathematics, 33. Springer-Verlag, New York, 1976. Google Scholar

[17]

M. V. de HoopS. F. HolmanE. IversenM. Lassas and B. Ursin, Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, J. Math. Pures Appl., 103 (2015), 830-848.  doi: 10.1016/j.matpur.2014.09.003.  Google Scholar

[18]

J. Itoh, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996), 642-651.  doi: 10.4310/jdg/1214458326.  Google Scholar

[19]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[20]

S. Janeczko and T. Mostowski, Relative generic singularities of the exponential map, Compositio Mathematica, 96 (1995), 345-370.   Google Scholar

[21]

F. Klok, Generic singularities of the exponential map on Riemannian manifolds, Geom. Dedicata, 14 (1983), 317-342.  doi: 10.1007/BF00181572.  Google Scholar

[22]

Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. Google Scholar

[23]

S. KurilevM. Lassas and G. Uhlmann, Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.  doi: 10.1353/ajm.0.0103.  Google Scholar

[24]

B. O'Neill, Construction of Riemannian coverings, Proc. Amer. Math. Soc., 19 (1968), 1278-1282.  doi: 10.1090/S0002-9939-1968-0232313-2.  Google Scholar

[25]

V. Ozols, Cut loci in Riemannian manifolds, Tôhoku Math. J.(2), 26 (1974), 219-227.  doi: 10.2748/tmj/1178241180.  Google Scholar

[26]

K. Pawel and H. Reckziegel, Affine submanifolds and the theorem of Cartan-Ambrose-Hicks, Kodai Math. J., 25 (2002), 341-356.  doi: 10.2996/kmj/1071674466.  Google Scholar

[27]

A. Weinstein, The generic conjugate locus, In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math, Soc., Providence, R. I., (1970), 299-301.   Google Scholar

[28]

A. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math.(2), 87 (1968), 29-41.  doi: 10.2307/1970592.  Google Scholar

show all references

References:
[1]

W. Ambrose, Parallel translation of riemannian curvature, Ann. of Math(2), 64 (1956), 337-363.  doi: 10.2307/1969978.  Google Scholar

[2]

P. Angulo, Cut and Conjugate Points of the Exponential Map, with Applications Ph. D. Dissertation at Universidad Autónoma de Madrid, 2014, arXiv: 1411.3933 Google Scholar

[3]

P. Angulo and L. Guijarro, Balanced split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 40 (2011), 223-252.  doi: 10.1007/s00526-010-0338-y.  Google Scholar

[4]

R. A. Blumenthal and J. J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, C. R. Acad. Sci. Paris Sér. I Math, 305 (1987), 647-651.  doi: 10.1007/BF00182117.  Google Scholar

[5]

M. A. Buchner, Stability of the cut locus in dimensions less than or equal to 6, Invent. Math., 43 (1977), 199-231.   Google Scholar

[6]

É. Cartan, Leçons sur la Géométrie des Espaces de Riemann (French) 2d ed. Gauthier-Villars, Paris, 1951. Google Scholar

[7]

M. Castelpietra and L. Rifford, Regularity Properties of the Distance Functions to Conjugate and Cut Loci for Viscosity Solutions of Hamilton-Jacobi Equations and Applications in Riemannian Geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695–718. arXiv: 0812.4107 (2008). doi: 10.1051/cocv/2009020.  Google Scholar

[8]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. Google Scholar

[9]

P. Griffiths and J. Wolf, Complete maps and differentiable coverings, Michigan Math. J., 10 (1963), 253-255.  doi: 10.1307/mmj/1028998907.  Google Scholar

[10]

B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math.(2), 171 (2010), 109-167.  doi: 10.4007/annals.2010.171.109.  Google Scholar

[11]

J. J. Hebda, Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem, Indiana Univ. Math. J., 31 (1982), 17-26.  doi: 10.1512/iumj.1982.31.31003.  Google Scholar

[12]

J. J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987), 559-572.  doi: 10.1090/S0002-9947-1987-0869221-6.  Google Scholar

[13]

J. J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994), 621-642.  doi: 10.4310/jdg/1214455780.  Google Scholar

[14]

J. J. Hebda, Heterogeneous Riemannian manifolds, Int. J. Math. Math. Sci. (2010), Article ID 187232, 7 pp. Google Scholar

[15]

N. Hicks, A theorem on affine connexions, Illinois J. Math., 3 (1959), 242-254.   Google Scholar

[16]

M. Hirsch, Differential Topology Graduate Texts in Mathematics, 33. Springer-Verlag, New York, 1976. Google Scholar

[17]

M. V. de HoopS. F. HolmanE. IversenM. Lassas and B. Ursin, Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, J. Math. Pures Appl., 103 (2015), 830-848.  doi: 10.1016/j.matpur.2014.09.003.  Google Scholar

[18]

J. Itoh, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996), 642-651.  doi: 10.4310/jdg/1214458326.  Google Scholar

[19]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[20]

S. Janeczko and T. Mostowski, Relative generic singularities of the exponential map, Compositio Mathematica, 96 (1995), 345-370.   Google Scholar

[21]

F. Klok, Generic singularities of the exponential map on Riemannian manifolds, Geom. Dedicata, 14 (1983), 317-342.  doi: 10.1007/BF00181572.  Google Scholar

[22]

Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. Google Scholar

[23]

S. KurilevM. Lassas and G. Uhlmann, Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.  doi: 10.1353/ajm.0.0103.  Google Scholar

[24]

B. O'Neill, Construction of Riemannian coverings, Proc. Amer. Math. Soc., 19 (1968), 1278-1282.  doi: 10.1090/S0002-9939-1968-0232313-2.  Google Scholar

[25]

V. Ozols, Cut loci in Riemannian manifolds, Tôhoku Math. J.(2), 26 (1974), 219-227.  doi: 10.2748/tmj/1178241180.  Google Scholar

[26]

K. Pawel and H. Reckziegel, Affine submanifolds and the theorem of Cartan-Ambrose-Hicks, Kodai Math. J., 25 (2002), 341-356.  doi: 10.2996/kmj/1071674466.  Google Scholar

[27]

A. Weinstein, The generic conjugate locus, In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math, Soc., Providence, R. I., (1970), 299-301.   Google Scholar

[28]

A. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math.(2), 87 (1968), 29-41.  doi: 10.2307/1970592.  Google Scholar

Figure 1.  A Standard T: The left hand side displays a curve $\alpha$ in ${T_p}M$, while the right hand side displays ${\exp _p} \circ \alpha$. Ⅰ, Ⅱ and Ⅳ are ACDCs, Ⅲ is the retort of Ⅱ, Ⅴ is the retort of Ⅳ, and Ⅵ is the retort of Ⅰ. Vertices 2 and 4 are $A_{3}$ joins, vertex 1 is a splitter, vertex 3 is a hit and vertex 5 is a reprise. There can be more than two segments between a splitter and its matching hit, and between a hit and its matching reprise.
Figure 2.  Flow diagram for the linking curve algorithm
Figure 3.  The distribution $D$ and the CDCs at the conjugate points near an $A_{4}$ point.
Figure 4.  CDCs in the half-cone of first conjugate points near an elliptic umbilic point, using the chart $(x_{1} ,x_{2} ) \rightarrow (x_{1} ,x_{2} ,- \sqrt{x_{1}^{2} +x_{2}^{2}} )$, for $r_{0} =(0,0,1)$. The distribution $D$ makes half turn as we make a full turn around $x_{1}^{2} +x_{2}^{2} =1$, spinning in the opposite direction.
Figure 5.  A hyperbolic umbilic point.
Figure 6.  This picture shows a neighborhood of an $A_{4}$ point in ${T_p}M$, together with the linking curves that start at $x$ and $y$ (to the left) and the image of the whole sketch by ${\exp _p}$ (to the right).
[1]

Reuven Cohen, Mira Gonen, Avishai Wool. Bounding the bias of tree-like sampling in IP topologies. Networks & Heterogeneous Media, 2008, 3 (2) : 323-332. doi: 10.3934/nhm.2008.3.323

[2]

Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511

[3]

Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005

[4]

Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83

[5]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[6]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[7]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[8]

Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20.

[9]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[10]

Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147

[11]

Bhakti Bhusan Manna, Sanjiban Santra. On the Hollman McKenna conjecture: Interior concentration near curves. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5595-5626. doi: 10.3934/dcds.2016046

[12]

Matteo Novaga, Enrico Valdinoci. Closed curves of prescribed curvature and a pinning effect. Networks & Heterogeneous Media, 2011, 6 (1) : 77-88. doi: 10.3934/nhm.2011.6.77

[13]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[14]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[15]

Yigui Ou, Haichan Lin. A class of accelerated conjugate-gradient-like methods based on a modified secant equation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019013

[16]

József Abaffy. A new reprojection of the conjugate directions. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 157-171. doi: 10.3934/naco.2019012

[17]

Keith Burns, Eugene Gutkin. Growth of the number of geodesics between points and insecurity for Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 403-413. doi: 10.3934/dcds.2008.21.403

[18]

Doan The Hieu, Tran Le Nam. The classification of constant weighted curvature curves in the plane with a log-linear density. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1641-1652. doi: 10.3934/cpaa.2014.13.1641

[19]

Thomas Feulner. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Advances in Mathematics of Communications, 2009, 3 (4) : 363-383. doi: 10.3934/amc.2009.3.363

[20]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (93)
  • HTML views (59)
  • Cited by (0)

Other articles
by authors

[Back to Top]