January  2018, 38(1): 1-41. doi: 10.3934/dcds.2018001

Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds

Universidad Politécnica de Madrid, ETSI Navales, Avd. Arco de la Victoria 4, 28040 Madrid

Received  April 2016 Revised  July 2017 Published  September 2017

Fund Project: The author was partially supported by research grant ERC 301179, and by INEM.

We present a new strategy for proving the Ambrose conjecture, a global version of the Cartan local lemma. We introduce the concepts of linking curves, unequivocal sets and sutured manifolds, and show that any sutured manifold satisfies the Ambrose conjecture. We then prove that the set of sutured Riemannian manifolds contains a residual set of the metrics on a given smooth manifold of dimension $3$.

Citation: Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 1-41. doi: 10.3934/dcds.2018001
References:
[1]

W. Ambrose, Parallel translation of riemannian curvature, Ann. of Math(2), 64 (1956), 337-363.  doi: 10.2307/1969978.  Google Scholar

[2]

P. Angulo, Cut and Conjugate Points of the Exponential Map, with Applications Ph. D. Dissertation at Universidad Autónoma de Madrid, 2014, arXiv: 1411.3933 Google Scholar

[3]

P. Angulo and L. Guijarro, Balanced split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 40 (2011), 223-252.  doi: 10.1007/s00526-010-0338-y.  Google Scholar

[4]

R. A. Blumenthal and J. J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, C. R. Acad. Sci. Paris Sér. I Math, 305 (1987), 647-651.  doi: 10.1007/BF00182117.  Google Scholar

[5]

M. A. Buchner, Stability of the cut locus in dimensions less than or equal to 6, Invent. Math., 43 (1977), 199-231.   Google Scholar

[6]

É. Cartan, Leçons sur la Géométrie des Espaces de Riemann (French) 2d ed. Gauthier-Villars, Paris, 1951. Google Scholar

[7]

M. Castelpietra and L. Rifford, Regularity Properties of the Distance Functions to Conjugate and Cut Loci for Viscosity Solutions of Hamilton-Jacobi Equations and Applications in Riemannian Geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695–718. arXiv: 0812.4107 (2008). doi: 10.1051/cocv/2009020.  Google Scholar

[8]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. Google Scholar

[9]

P. Griffiths and J. Wolf, Complete maps and differentiable coverings, Michigan Math. J., 10 (1963), 253-255.  doi: 10.1307/mmj/1028998907.  Google Scholar

[10]

B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math.(2), 171 (2010), 109-167.  doi: 10.4007/annals.2010.171.109.  Google Scholar

[11]

J. J. Hebda, Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem, Indiana Univ. Math. J., 31 (1982), 17-26.  doi: 10.1512/iumj.1982.31.31003.  Google Scholar

[12]

J. J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987), 559-572.  doi: 10.1090/S0002-9947-1987-0869221-6.  Google Scholar

[13]

J. J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994), 621-642.  doi: 10.4310/jdg/1214455780.  Google Scholar

[14]

J. J. Hebda, Heterogeneous Riemannian manifolds, Int. J. Math. Math. Sci. (2010), Article ID 187232, 7 pp. Google Scholar

[15]

N. Hicks, A theorem on affine connexions, Illinois J. Math., 3 (1959), 242-254.   Google Scholar

[16]

M. Hirsch, Differential Topology Graduate Texts in Mathematics, 33. Springer-Verlag, New York, 1976. Google Scholar

[17]

M. V. de HoopS. F. HolmanE. IversenM. Lassas and B. Ursin, Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, J. Math. Pures Appl., 103 (2015), 830-848.  doi: 10.1016/j.matpur.2014.09.003.  Google Scholar

[18]

J. Itoh, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996), 642-651.  doi: 10.4310/jdg/1214458326.  Google Scholar

[19]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[20]

S. Janeczko and T. Mostowski, Relative generic singularities of the exponential map, Compositio Mathematica, 96 (1995), 345-370.   Google Scholar

[21]

F. Klok, Generic singularities of the exponential map on Riemannian manifolds, Geom. Dedicata, 14 (1983), 317-342.  doi: 10.1007/BF00181572.  Google Scholar

[22]

Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. Google Scholar

[23]

S. KurilevM. Lassas and G. Uhlmann, Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.  doi: 10.1353/ajm.0.0103.  Google Scholar

[24]

B. O'Neill, Construction of Riemannian coverings, Proc. Amer. Math. Soc., 19 (1968), 1278-1282.  doi: 10.1090/S0002-9939-1968-0232313-2.  Google Scholar

[25]

V. Ozols, Cut loci in Riemannian manifolds, Tôhoku Math. J.(2), 26 (1974), 219-227.  doi: 10.2748/tmj/1178241180.  Google Scholar

[26]

K. Pawel and H. Reckziegel, Affine submanifolds and the theorem of Cartan-Ambrose-Hicks, Kodai Math. J., 25 (2002), 341-356.  doi: 10.2996/kmj/1071674466.  Google Scholar

[27]

A. Weinstein, The generic conjugate locus, In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math, Soc., Providence, R. I., (1970), 299-301.   Google Scholar

[28]

A. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math.(2), 87 (1968), 29-41.  doi: 10.2307/1970592.  Google Scholar

show all references

References:
[1]

W. Ambrose, Parallel translation of riemannian curvature, Ann. of Math(2), 64 (1956), 337-363.  doi: 10.2307/1969978.  Google Scholar

[2]

P. Angulo, Cut and Conjugate Points of the Exponential Map, with Applications Ph. D. Dissertation at Universidad Autónoma de Madrid, 2014, arXiv: 1411.3933 Google Scholar

[3]

P. Angulo and L. Guijarro, Balanced split sets and Hamilton-Jacobi equations, Calc. Var. Partial Differential Equations, 40 (2011), 223-252.  doi: 10.1007/s00526-010-0338-y.  Google Scholar

[4]

R. A. Blumenthal and J. J. Hebda, The generalized Cartan-Ambrose-Hicks theorem, C. R. Acad. Sci. Paris Sér. I Math, 305 (1987), 647-651.  doi: 10.1007/BF00182117.  Google Scholar

[5]

M. A. Buchner, Stability of the cut locus in dimensions less than or equal to 6, Invent. Math., 43 (1977), 199-231.   Google Scholar

[6]

É. Cartan, Leçons sur la Géométrie des Espaces de Riemann (French) 2d ed. Gauthier-Villars, Paris, 1951. Google Scholar

[7]

M. Castelpietra and L. Rifford, Regularity Properties of the Distance Functions to Conjugate and Cut Loci for Viscosity Solutions of Hamilton-Jacobi Equations and Applications in Riemannian Geometry, ESAIM Control Optim. Calc. Var., 16 (2010), 695–718. arXiv: 0812.4107 (2008). doi: 10.1051/cocv/2009020.  Google Scholar

[8]

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry Revised reprint of the 1975 original. AMS Chelsea Publishing, Providence, RI, 2008. Google Scholar

[9]

P. Griffiths and J. Wolf, Complete maps and differentiable coverings, Michigan Math. J., 10 (1963), 253-255.  doi: 10.1307/mmj/1028998907.  Google Scholar

[10]

B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded variation and the reduced path group, Ann. of Math.(2), 171 (2010), 109-167.  doi: 10.4007/annals.2010.171.109.  Google Scholar

[11]

J. J. Hebda, Conjugate and cut loci and the Cartan-Ambrose-Hicks theorem, Indiana Univ. Math. J., 31 (1982), 17-26.  doi: 10.1512/iumj.1982.31.31003.  Google Scholar

[12]

J. J. Hebda, Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., 299 (1987), 559-572.  doi: 10.1090/S0002-9947-1987-0869221-6.  Google Scholar

[13]

J. J. Hebda, Metric structure of cut loci in surfaces and Ambrose's problem, J. Differential Geom., 40 (1994), 621-642.  doi: 10.4310/jdg/1214455780.  Google Scholar

[14]

J. J. Hebda, Heterogeneous Riemannian manifolds, Int. J. Math. Math. Sci. (2010), Article ID 187232, 7 pp. Google Scholar

[15]

N. Hicks, A theorem on affine connexions, Illinois J. Math., 3 (1959), 242-254.   Google Scholar

[16]

M. Hirsch, Differential Topology Graduate Texts in Mathematics, 33. Springer-Verlag, New York, 1976. Google Scholar

[17]

M. V. de HoopS. F. HolmanE. IversenM. Lassas and B. Ursin, Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, J. Math. Pures Appl., 103 (2015), 830-848.  doi: 10.1016/j.matpur.2014.09.003.  Google Scholar

[18]

J. Itoh, The length of a cut locus on a surface and Ambrose's problem, J. Differential Geom., 43 (1996), 642-651.  doi: 10.4310/jdg/1214458326.  Google Scholar

[19]

J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus, Trans. Amer. Math. Soc., 353 (2001), 21-40.  doi: 10.1090/S0002-9947-00-02564-2.  Google Scholar

[20]

S. Janeczko and T. Mostowski, Relative generic singularities of the exponential map, Compositio Mathematica, 96 (1995), 345-370.   Google Scholar

[21]

F. Klok, Generic singularities of the exponential map on Riemannian manifolds, Geom. Dedicata, 14 (1983), 317-342.  doi: 10.1007/BF00181572.  Google Scholar

[22]

Sh. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. Google Scholar

[23]

S. KurilevM. Lassas and G. Uhlmann, Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.  doi: 10.1353/ajm.0.0103.  Google Scholar

[24]

B. O'Neill, Construction of Riemannian coverings, Proc. Amer. Math. Soc., 19 (1968), 1278-1282.  doi: 10.1090/S0002-9939-1968-0232313-2.  Google Scholar

[25]

V. Ozols, Cut loci in Riemannian manifolds, Tôhoku Math. J.(2), 26 (1974), 219-227.  doi: 10.2748/tmj/1178241180.  Google Scholar

[26]

K. Pawel and H. Reckziegel, Affine submanifolds and the theorem of Cartan-Ambrose-Hicks, Kodai Math. J., 25 (2002), 341-356.  doi: 10.2996/kmj/1071674466.  Google Scholar

[27]

A. Weinstein, The generic conjugate locus, In Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968), Amer. Math, Soc., Providence, R. I., (1970), 299-301.   Google Scholar

[28]

A. Weinstein, The cut locus and conjugate locus of a riemannian manifold, Ann. of Math.(2), 87 (1968), 29-41.  doi: 10.2307/1970592.  Google Scholar

Figure 1.  A Standard T: The left hand side displays a curve $\alpha$ in ${T_p}M$, while the right hand side displays ${\exp _p} \circ \alpha$. Ⅰ, Ⅱ and Ⅳ are ACDCs, Ⅲ is the retort of Ⅱ, Ⅴ is the retort of Ⅳ, and Ⅵ is the retort of Ⅰ. Vertices 2 and 4 are $A_{3}$ joins, vertex 1 is a splitter, vertex 3 is a hit and vertex 5 is a reprise. There can be more than two segments between a splitter and its matching hit, and between a hit and its matching reprise.
Figure 2.  Flow diagram for the linking curve algorithm
Figure 3.  The distribution $D$ and the CDCs at the conjugate points near an $A_{4}$ point.
Figure 4.  CDCs in the half-cone of first conjugate points near an elliptic umbilic point, using the chart $(x_{1} ,x_{2} ) \rightarrow (x_{1} ,x_{2} ,- \sqrt{x_{1}^{2} +x_{2}^{2}} )$, for $r_{0} =(0,0,1)$. The distribution $D$ makes half turn as we make a full turn around $x_{1}^{2} +x_{2}^{2} =1$, spinning in the opposite direction.
Figure 5.  A hyperbolic umbilic point.
Figure 6.  This picture shows a neighborhood of an $A_{4}$ point in ${T_p}M$, together with the linking curves that start at $x$ and $y$ (to the left) and the image of the whole sketch by ${\exp _p}$ (to the right).
[1]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[2]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[3]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[4]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[5]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[8]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[9]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[10]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[11]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[12]

Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. Semi-automatic segmentation of NATURA 2000 habitats in Sentinel-2 satellite images by evolving open curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1033-1046. doi: 10.3934/dcdss.2020231

[13]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[14]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[15]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[16]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[17]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[18]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[19]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[20]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (132)
  • HTML views (104)
  • Cited by (0)

Other articles
by authors

[Back to Top]