January  2018, 38(1): 43-62. doi: 10.3934/dcds.2018002

Stability and bifurcation on predator-prey systems with nonlocal prey competition

1. 

School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong, 510006, China

2. 

Department of Mathematics, Harbin Institute of Technology, Weihai, Shandong, 264209, China

* Corresponding author

Received  November 2016 Revised  July 2017 Published  September 2017

Fund Project: The authors are supported by the National Natural Science Foundation of China (Nos. 11471085,11771109).

In this paper, we investigate diffusive predator-prey systems with nonlocal intraspecific competition of prey for resources. We prove the existence and uniqueness of positive steady states when the conversion rate is large. To show the existence of complex spatiotemporal patterns, we consider the Hopf bifurcation for a spatially homogeneous kernel function, by using the conversion rate as the bifurcation parameter. Our results suggest that Hopf bifurcation is more likely to occur with nonlocal competition of prey. Moreover, we find that the steady state can lose the stability when conversion rate passes through some Hopf bifurcation value, and the bifurcating periodic solutions near such bifurcation value can be spatially nonhomogeneous. This phenomenon is different from that for the model without nonlocal competition of prey, where the bifurcating periodic solutions are spatially homogeneous near such bifurcation value.

Citation: Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002
References:
[1]

C.O. AlvesM. DelgadoM.A.S. Souto and A. Suárez, Existence of positive solution of a nonlocal logistic population model, Z. Angew. Math. Phys., 66 (2015), 943-953.  doi: 10.1007/s00033-014-0458-x.  Google Scholar

[2]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[3]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346.  doi: 10.1088/0951-7715/17/1/018.  Google Scholar

[4]

N.F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

C.-C. Chen and L.-C. Hung, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species, Commun. Pure Appl. Anal., 15 (2016), 1451-1469.  doi: 10.3934/cpaa.2016.15.1451.  Google Scholar

[6]

S. Chen and J. Yu, Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator, J. Differential Equations, 260 (2016), 7923-7939.  doi: 10.1016/j.jde.2016.02.007.  Google Scholar

[7]

S. Chen and J. Yu, Stability analysis of a reaction-diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dyn. Diff. Equat., 28 (2016), 857-866.  doi: 10.1007/s10884-014-9384-z.  Google Scholar

[8]

S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differential Equations, 260 (2016), 218-240.  doi: 10.1016/j.jde.2015.08.038.  Google Scholar

[9]

F.J. S.A. CorrêaM. Delgado and A. Suárez, Some nonlinear heterogeneous problems with nonlocal reaction term, Advances in Differential Equations, 16 (2011), 623-641.   Google Scholar

[10]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[11]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[12]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc., 349 (1997), 2443-2475.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[13]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[14]

Y. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.  doi: 10.1017/S0308210500000895.  Google Scholar

[15]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[16]

G. Faye and M. Holzer, Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach, J. Differential Equations, 258 (2015), 2257-2289.  doi: 10.1016/j.jde.2014.12.006.  Google Scholar

[17]

J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.  Google Scholar

[18]

S.A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.  doi: 10.1007/s002850000047.  Google Scholar

[19]

S.A. Gourley and N.F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.  doi: 10.1007/BF00160498.  Google Scholar

[20]

S.A. Gourley and J.W.-H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.  doi: 10.1007/s002850100109.  Google Scholar

[21]

S.A. GourleyJ.W.-H. So and J. Wu, Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[22]

F. Hamel and L. Ryzhik, On the nonlocal Fisher-KPP equation: Steady states, spreading speed and global bounds, Nonlinearity, 27 (2014), 2735-2753.  doi: 10.1088/0951-7715/27/11/2735.  Google Scholar

[23]

B.-S. HanZ.-C. Wang and Z. Feng, Traveling waves for the nonlocal diffusive single species model with Allee effect, J. Math. Anal. Appl., 443 (2016), 243-264.  doi: 10.1016/j.jmaa.2016.05.031.  Google Scholar

[24]

J. JinJ. ShiJ. Wei and F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Moun. J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[25]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[26]

A. Leung, Limiting behaviour for a prey-predator model with diffusion and crowding effects, J. Math. Biol., 6 (1978), 87-93.  doi: 10.1007/BF02478520.  Google Scholar

[27]

G.M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary $p$ in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400-1406.  doi: 10.1137/S003614100343651X.  Google Scholar

[28]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Cont. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[31]

A. MadzvamuseH.S. Ndakwo and R. Barreira, Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete Cont. Dyn. Syst., 36 (2016), 2133-2170.  doi: 10.3934/dcds.2016.36.2133.  Google Scholar

[32]

S.M. Merchant and W. Nagata, Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 80 (2011), 289-297.  doi: 10.1016/j.tpb.2011.10.001.  Google Scholar

[33]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[34]

R. PengJ. Shi and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math., 67 (2007), 1479-1503.  doi: 10.1137/05064624X.  Google Scholar

[35]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[36]

R. PengF.-Q. Yi and X.-Q. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 254 (2013), 2465-2498.  doi: 10.1016/j.jde.2012.12.009.  Google Scholar

[37]

Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 27 (2014), 87-104.  doi: 10.1088/0951-7715/27/1/87.  Google Scholar

[38]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.  Google Scholar

[39]

C. WangR. LiuJ. Shi and C.M. del Rio, Traveling waves of a mutualistic model of mistletoes and birds, Discrete Cont. Dyn. Syst., 35 (2015), 1743-1765.  doi: 10.3934/dcds.2015.35.1743.  Google Scholar

[40]

Y. Yamada, On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal., 118 (2015), 51-62.  doi: 10.1016/j.na.2015.01.016.  Google Scholar

[41]

W.-b. YangJ.-H. Wu and H. Nie, Some uniqueness and multiplicity results for a predator-prey dynamics with a nonlinear growth rate, Commun. Pure Appl. Anal., 14 (2015), 1183-1204.  doi: 10.3934/cpaa.2015.14.1183.  Google Scholar

[42]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[43]

J. Zhou, Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses, Commun. Pure Appl. Anal., 14 (2015), 1127-1145.  doi: 10.3934/cpaa.2015.14.1127.  Google Scholar

[44]

J. Zhou and C. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl., 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.  Google Scholar

show all references

References:
[1]

C.O. AlvesM. DelgadoM.A.S. Souto and A. Suárez, Existence of positive solution of a nonlocal logistic population model, Z. Angew. Math. Phys., 66 (2015), 943-953.  doi: 10.1007/s00033-014-0458-x.  Google Scholar

[2]

H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Travelling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[3]

J. Billingham, Dynamics of a strongly nonlocal reaction-diffusion population model, Nonlinearity, 17 (2004), 313-346.  doi: 10.1088/0951-7715/17/1/018.  Google Scholar

[4]

N.F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

C.-C. Chen and L.-C. Hung, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species, Commun. Pure Appl. Anal., 15 (2016), 1451-1469.  doi: 10.3934/cpaa.2016.15.1451.  Google Scholar

[6]

S. Chen and J. Yu, Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator, J. Differential Equations, 260 (2016), 7923-7939.  doi: 10.1016/j.jde.2016.02.007.  Google Scholar

[7]

S. Chen and J. Yu, Stability analysis of a reaction-diffusion equation with spatiotemporal delay and Dirichlet boundary condition, J. Dyn. Diff. Equat., 28 (2016), 857-866.  doi: 10.1007/s10884-014-9384-z.  Google Scholar

[8]

S. Chen and J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differential Equations, 260 (2016), 218-240.  doi: 10.1016/j.jde.2015.08.038.  Google Scholar

[9]

F.J. S.A. CorrêaM. Delgado and A. Suárez, Some nonlinear heterogeneous problems with nonlocal reaction term, Advances in Differential Equations, 16 (2011), 623-641.   Google Scholar

[10]

Y. Du and S.-B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[11]

Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modeling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.  doi: 10.1137/090775105.  Google Scholar

[12]

Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc., 349 (1997), 2443-2475.  doi: 10.1090/S0002-9947-97-01842-4.  Google Scholar

[13]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.  doi: 10.1006/jdeq.1997.3394.  Google Scholar

[14]

Y. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.  doi: 10.1017/S0308210500000895.  Google Scholar

[15]

J. Fang and X.-Q. Zhao, Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, 24 (2011), 3043-3054.  doi: 10.1088/0951-7715/24/11/002.  Google Scholar

[16]

G. Faye and M. Holzer, Modulated traveling fronts for a nonlocal Fisher-KPP equation: A dynamical systems approach, J. Differential Equations, 258 (2015), 2257-2289.  doi: 10.1016/j.jde.2014.12.006.  Google Scholar

[17]

J. Furter and M. Grinfeld, Local vs. non-local interactions in population dynamics, J. Math. Biol., 27 (1989), 65-80.  doi: 10.1007/BF00276081.  Google Scholar

[18]

S.A. Gourley, Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., 41 (2000), 272-284.  doi: 10.1007/s002850000047.  Google Scholar

[19]

S.A. Gourley and N.F. Britton, A predator-prey reaction-diffusion system with nonlocal effects, J. Math. Biol., 34 (1996), 297-333.  doi: 10.1007/BF00160498.  Google Scholar

[20]

S.A. Gourley and J.W.-H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 44 (2002), 49-78.  doi: 10.1007/s002850100109.  Google Scholar

[21]

S.A. GourleyJ.W.-H. So and J. Wu, Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics, J. Math. Sci., 124 (2004), 5119-5153.  doi: 10.1023/B:JOTH.0000047249.39572.6d.  Google Scholar

[22]

F. Hamel and L. Ryzhik, On the nonlocal Fisher-KPP equation: Steady states, spreading speed and global bounds, Nonlinearity, 27 (2014), 2735-2753.  doi: 10.1088/0951-7715/27/11/2735.  Google Scholar

[23]

B.-S. HanZ.-C. Wang and Z. Feng, Traveling waves for the nonlocal diffusive single species model with Allee effect, J. Math. Anal. Appl., 443 (2016), 243-264.  doi: 10.1016/j.jmaa.2016.05.031.  Google Scholar

[24]

J. JinJ. ShiJ. Wei and F. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, Rocky Moun. J. Math., 43 (2013), 1637-1674.  doi: 10.1216/RMJ-2013-43-5-1637.  Google Scholar

[25]

W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations, 231 (2006), 534-550.  doi: 10.1016/j.jde.2006.08.001.  Google Scholar

[26]

A. Leung, Limiting behaviour for a prey-predator model with diffusion and crowding effects, J. Math. Biol., 6 (1978), 87-93.  doi: 10.1007/BF02478520.  Google Scholar

[27]

G.M. Lieberman, Bounds for the steady-state Sel'kov model for arbitrary $p$ in any number of dimensions, SIAM J. Math. Anal., 36 (2005), 1400-1406.  doi: 10.1137/S003614100343651X.  Google Scholar

[28]

C.-S. LinW.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[29]

Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[30]

Y. LouW.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, Discrete Cont. Dyn. Syst., 35 (2015), 1589-1607.  doi: 10.3934/dcds.2015.35.1589.  Google Scholar

[31]

A. MadzvamuseH.S. Ndakwo and R. Barreira, Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete Cont. Dyn. Syst., 36 (2016), 2133-2170.  doi: 10.3934/dcds.2016.36.2133.  Google Scholar

[32]

S.M. Merchant and W. Nagata, Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 80 (2011), 289-297.  doi: 10.1016/j.tpb.2011.10.001.  Google Scholar

[33]

R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886.  doi: 10.1016/j.jde.2009.03.008.  Google Scholar

[34]

R. PengJ. Shi and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math., 67 (2007), 1479-1503.  doi: 10.1137/05064624X.  Google Scholar

[35]

R. PengJ. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488.  doi: 10.1088/0951-7715/21/7/006.  Google Scholar

[36]

R. PengF.-Q. Yi and X.-Q. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differential Equations, 254 (2013), 2465-2498.  doi: 10.1016/j.jde.2012.12.009.  Google Scholar

[37]

Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 27 (2014), 87-104.  doi: 10.1088/0951-7715/27/1/87.  Google Scholar

[38]

L. SunJ. Shi and Y. Wang, Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation, Z. Angew. Math. Phys., 64 (2013), 1267-1278.  doi: 10.1007/s00033-012-0286-9.  Google Scholar

[39]

C. WangR. LiuJ. Shi and C.M. del Rio, Traveling waves of a mutualistic model of mistletoes and birds, Discrete Cont. Dyn. Syst., 35 (2015), 1743-1765.  doi: 10.3934/dcds.2015.35.1743.  Google Scholar

[40]

Y. Yamada, On logistic diffusion equations with nonlocal interaction terms, Nonlinear Anal., 118 (2015), 51-62.  doi: 10.1016/j.na.2015.01.016.  Google Scholar

[41]

W.-b. YangJ.-H. Wu and H. Nie, Some uniqueness and multiplicity results for a predator-prey dynamics with a nonlinear growth rate, Commun. Pure Appl. Anal., 14 (2015), 1183-1204.  doi: 10.3934/cpaa.2015.14.1183.  Google Scholar

[42]

F. YiJ. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[43]

J. Zhou, Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses, Commun. Pure Appl. Anal., 14 (2015), 1127-1145.  doi: 10.3934/cpaa.2015.14.1127.  Google Scholar

[44]

J. Zhou and C. Mu, Coexistence states of a Holling type-II predator-prey system, J. Math. Anal. Appl., 369 (2010), 555-563.  doi: 10.1016/j.jmaa.2010.04.001.  Google Scholar

Figure 1.  The constant steady state loses its stability through Hopf bifurcation, and the solution converges to the bifurcated spatially nonhomogeneous periodic solution. Here initial values: $u(x,0)=0.3+0.1\cos^2\frac{x}{4},v(x,0)=0.2+0.1\cos^2\frac{x}{2},x\in[0,2\pi]$. (Upper): $\gamma=4$; (Lower): $\gamma=9$.
Figure 2.  The constant steady state loses its stability through Hopf bifurcation. (Upper): $\gamma=2.7$, and the solution converges to the bifurcated spatially nonhomogeneous periodic solution. Here initial values: $u(x,0)=0.3+0.1\cos^2\frac{x}{3},v(x,0)=0.2+0.1\cos^2\frac{x}{3},x\in[0,1.5\pi]$. (Lower): $\gamma=6$, and the solution converges to the bifurcated spatially homogeneous periodic solution. Here initial values: $u(x,0)=0.7+0.5\cos^2\frac{x}{3},v(x,0)=0.7+0.5\cos^2\frac{x}{3},x\in[0,1.5\pi]$.
[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (331)
  • HTML views (189)
  • Cited by (12)

Other articles
by authors

[Back to Top]