-
Previous Article
Regularity of elliptic systems in divergence form with directional homogenization
- DCDS Home
- This Issue
-
Next Article
Stability and bifurcation on predator-prey systems with nonlocal prey competition
Surgery on Herman rings of the standard Blaschke family
Northwest University, School of Mathematics, Xi'an Shaanxi 710127, China |
$B_{\alpha ,a}$ |
${B_{\alpha ,a}}(z) = {e^{2\pi {\rm{\mathbf{i}}}\alpha }}{z^{d + 1}}{(\frac{{z - a}}{{1 - az}})^d}.$ |
$B_{\alpha ,a}|_{S^1}$ |
$B_{\alpha ,a}$ |
$θ$ |
$(\alpha ,a)$ |
$B_{\alpha ,a}|_{S^1}$ |
$θ$ |
$T_d(θ)$ |
$θ$ |
$a=M(θ)$ |
$∞$ |
$M(θ)≥q 2d+1$ |
$θ ∈ \mathcal {B}\setminus\mathcal {H}$ |
$M(θ)$ |
$2d+1$ |
References:
[1] |
L. Ahlfors,
Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006.
doi: 10.1090/ulect/038. |
[2] |
V. Arnold,
Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96.
|
[3] |
H. F. Chu,
On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182.
doi: 10.1090/S0002-9939-2014-12359-8. |
[4] |
N. Fagella and L. Geyer,
Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508.
doi: 10.1017/S0143385702001323. |
[5] |
L. Geyer,
Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683.
doi: 10.1090/S0002-9947-01-02662-9. |
[6] |
C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997. |
[7] |
M. Herman,
Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233.
|
[8] |
M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript. |
[9] |
O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. |
[10] |
W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993.
doi: 10.1007/978-3-642-78043-1. |
[11] |
J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000.
doi: 10.1007/978-3-663-08092-3. |
[12] |
E. Risler,
Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102.
|
[13] |
M. Shishikura,
On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29.
doi: 10.24033/asens.1522. |
[14] |
J. C. Yoccoz,
Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173.
doi: 10.1007/978-3-540-47928-4_3. |
show all references
References:
[1] |
L. Ahlfors,
Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006.
doi: 10.1090/ulect/038. |
[2] |
V. Arnold,
Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96.
|
[3] |
H. F. Chu,
On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182.
doi: 10.1090/S0002-9939-2014-12359-8. |
[4] |
N. Fagella and L. Geyer,
Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508.
doi: 10.1017/S0143385702001323. |
[5] |
L. Geyer,
Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683.
doi: 10.1090/S0002-9947-01-02662-9. |
[6] |
C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997. |
[7] |
M. Herman,
Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233.
|
[8] |
M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript. |
[9] |
O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. |
[10] |
W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993.
doi: 10.1007/978-3-642-78043-1. |
[11] |
J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000.
doi: 10.1007/978-3-663-08092-3. |
[12] |
E. Risler,
Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102.
|
[13] |
M. Shishikura,
On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29.
doi: 10.24033/asens.1522. |
[14] |
J. C. Yoccoz,
Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173.
doi: 10.1007/978-3-540-47928-4_3. |
[1] |
S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30. |
[2] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[3] |
Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153 |
[4] |
Gaven J. Martin. The Hilbert-Smith conjecture for quasiconformal actions. Electronic Research Announcements, 1999, 5: 66-70. |
[5] |
Shengliang Pan, Deyan Zhang, Zhongjun Chao. A generalization of the Blaschke-Lebesgue problem to a kind of convex domains. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1587-1601. doi: 10.3934/dcdsb.2016012 |
[6] |
Yong Fang. Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3471-3483. doi: 10.3934/dcds.2014.34.3471 |
[7] |
Ho Law, Gary P. T. Choi, Ka Chun Lam, Lok Ming Lui. Quasiconformal model with CNN features for large deformation image registration. Inverse Problems and Imaging, 2022, 16 (4) : 1019-1046. doi: 10.3934/ipi.2022010 |
[8] |
Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 |
[9] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[10] |
Genady Ya. Grabarnik, Misha Guysinsky. Livšic theorem for banach rings. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4379-4390. doi: 10.3934/dcds.2017187 |
[11] |
Zihui Liu. Galois LCD codes over rings. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022002 |
[12] |
Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221 |
[13] |
Ismet Cinar, Ozgur Ege, Ismet Karaca. The digital smash product. Electronic Research Archive, 2020, 28 (1) : 459-469. doi: 10.3934/era.2020026 |
[14] |
Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465 |
[15] |
Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257 |
[16] |
Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217 |
[17] |
Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034 |
[18] |
Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39 |
[19] |
Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901 |
[20] |
M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]