January  2018, 38(1): 63-74. doi: 10.3934/dcds.2018003

Surgery on Herman rings of the standard Blaschke family

Northwest University, School of Mathematics, Xi'an Shaanxi 710127, China

Received  January 2016 Revised  August 2017 Published  September 2017

Fund Project: The author is supported by NSFC (grant No. 11426177,11301417) and NSF of Northwest University (grant No. NC14035).

Let
$B_{\alpha ,a}$
be the Blaschke product of the following form:
${B_{\alpha ,a}}(z) = {e^{2\pi {\rm{\mathbf{i}}}\alpha }}{z^{d + 1}}{(\frac{{z - a}}{{1 - az}})^d}.$
If
$B_{\alpha ,a}|_{S^1}$
is analytically linearizable, then there is a Herman ring admitting the unit circle as an invariant curve in the dynamical plane of
$B_{\alpha ,a}$
. Given an irrational number
$θ$
, the parameters
$(\alpha ,a)$
such that
$B_{\alpha ,a}|_{S^1}$
has rotation number
$θ$
form a curve
$T_d(θ)$
in the parameter plane. Using quasiconformal surgery, we prove that if
$θ$
is of Brjuno type, the curve can be parameterized real analytically by the modulus of the Herman ring, from
$a=M(θ)$
up to
$∞$
with
$M(θ)≥q 2d+1$
, for which the Herman ring vanishes.Moreover, we can show that for a certain set of irrational numbers
$θ ∈ \mathcal {B}\setminus\mathcal {H}$
, the number
$M(θ)$
is strictly greater than
$2d+1$
and the boundary of the Herman rings consist of two quasicircles not containing any critical point.
Citation: Haifeng Chu. Surgery on Herman rings of the standard Blaschke family. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 63-74. doi: 10.3934/dcds.2018003
References:
[1]

L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038.  Google Scholar

[2]

V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96.   Google Scholar

[3]

H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182.  doi: 10.1090/S0002-9939-2014-12359-8.  Google Scholar

[4]

N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508.  doi: 10.1017/S0143385702001323.  Google Scholar

[5]

L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683.  doi: 10.1090/S0002-9947-01-02662-9.  Google Scholar

[6]

C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997. Google Scholar

[7]

M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233.   Google Scholar

[8]

M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript. Google Scholar

[9]

O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973.  Google Scholar

[10]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1.  Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3.  Google Scholar

[12]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102.   Google Scholar

[13]

M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29.  doi: 10.24033/asens.1522.  Google Scholar

[14]

J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.  Google Scholar

show all references

References:
[1]

L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038.  Google Scholar

[2]

V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96.   Google Scholar

[3]

H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182.  doi: 10.1090/S0002-9939-2014-12359-8.  Google Scholar

[4]

N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508.  doi: 10.1017/S0143385702001323.  Google Scholar

[5]

L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683.  doi: 10.1090/S0002-9947-01-02662-9.  Google Scholar

[6]

C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997. Google Scholar

[7]

M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233.   Google Scholar

[8]

M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript. Google Scholar

[9]

O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973.  Google Scholar

[10]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1.  Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3.  Google Scholar

[12]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102.   Google Scholar

[13]

M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29.  doi: 10.24033/asens.1522.  Google Scholar

[14]

J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173.  doi: 10.1007/978-3-540-47928-4_3.  Google Scholar

[1]

Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077

[2]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[3]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (102)
  • HTML views (86)
  • Cited by (0)

Other articles
by authors

[Back to Top]