January  2018, 38(1): 63-74. doi: 10.3934/dcds.2018003

Surgery on Herman rings of the standard Blaschke family

Northwest University, School of Mathematics, Xi'an Shaanxi 710127, China

Received  January 2016 Revised  August 2017 Published  September 2017

Fund Project: The author is supported by NSFC (grant No. 11426177,11301417) and NSF of Northwest University (grant No. NC14035)

Let
$B_{\alpha ,a}$
be the Blaschke product of the following form:
${B_{\alpha ,a}}(z) = {e^{2\pi {\rm{\mathbf{i}}}\alpha }}{z^{d + 1}}{(\frac{{z - a}}{{1 - az}})^d}.$
If
$B_{\alpha ,a}|_{S^1}$
is analytically linearizable, then there is a Herman ring admitting the unit circle as an invariant curve in the dynamical plane of
$B_{\alpha ,a}$
. Given an irrational number
$θ$
, the parameters
$(\alpha ,a)$
such that
$B_{\alpha ,a}|_{S^1}$
has rotation number
$θ$
form a curve
$T_d(θ)$
in the parameter plane. Using quasiconformal surgery, we prove that if
$θ$
is of Brjuno type, the curve can be parameterized real analytically by the modulus of the Herman ring, from
$a=M(θ)$
up to
$∞$
with
$M(θ)≥q 2d+1$
, for which the Herman ring vanishes.Moreover, we can show that for a certain set of irrational numbers
$θ ∈ \mathcal {B}\setminus\mathcal {H}$
, the number
$M(θ)$
is strictly greater than
$2d+1$
and the boundary of the Herman rings consist of two quasicircles not containing any critical point.
Citation: Haifeng Chu. Surgery on Herman rings of the standard Blaschke family. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 63-74. doi: 10.3934/dcds.2018003
References:
[1]

L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038. Google Scholar

[2]

V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96. Google Scholar

[3]

H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182. doi: 10.1090/S0002-9939-2014-12359-8. Google Scholar

[4]

N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508. doi: 10.1017/S0143385702001323. Google Scholar

[5]

L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683. doi: 10.1090/S0002-9947-01-02662-9. Google Scholar

[6]

C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997.Google Scholar

[7]

M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233. Google Scholar

[8]

M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript.Google Scholar

[9]

O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. Google Scholar

[10]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3. Google Scholar

[12]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102. Google Scholar

[13]

M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29. doi: 10.24033/asens.1522. Google Scholar

[14]

J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173. doi: 10.1007/978-3-540-47928-4_3. Google Scholar

show all references

References:
[1]

L. Ahlfors, Lectures on Quasiconformal Mappings 2$^{nd}$ edition, University Lecture Series, 38 2006. doi: 10.1090/ulect/038. Google Scholar

[2]

V. Arnold, Small denominators I: On the mapping of a circle into itself, Nauk. Math., Series, 25 (1961), 21-96. Google Scholar

[3]

H. F. Chu, On the Blaschke circle diffeomorphisms, Proceedings of the American Mathematical Society, 143 (2015), 1169-1182. doi: 10.1090/S0002-9939-2014-12359-8. Google Scholar

[4]

N. Fagella and L. Geyer, Surgery on Herman rings of the complex standard family, Ergodic Theory and Dynamical Systems, 23 (2003), 493-508. doi: 10.1017/S0143385702001323. Google Scholar

[5]

L. Geyer, Siegel disks, Herman rings and Arnold family, Trans. Amer. Math. Soc., 353 (2001), 3661-3683. doi: 10.1090/S0002-9947-01-02662-9. Google Scholar

[6]

C. Henriksen, Holomorphic Dynamics and Herman Rings Master's thesis, Technical University of Denmark, 1997.Google Scholar

[7]

M. Herman, Sur les conjugaison différentiable des difféomorphismes du cercle á des rotations, Publ. Math. IHES., 49 (1979), 5-233. Google Scholar

[8]

M. Herman, Conjugaison quasi-symmétrique des difféomorphismes du cercle á des rotations et applications aux disques singuliers de siegel I, unpublished manuscript.Google Scholar

[9]

O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane Springer-Verlag, 1973. Google Scholar

[10]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, 1993. doi: 10.1007/978-3-642-78043-1. Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable ntroductory Lectures, 2000. doi: 10.1007/978-3-663-08092-3. Google Scholar

[12]

E. Risler, Linéarisation des perturbations holomorphes des rotations et applications, Mémoires de la Société Mathématique de France, 77 (1999), 1-102. Google Scholar

[13]

M. Shishikura, On the quasiconformal surgery of rational functions, Ann. Sci. École Norm., 20 (1987), 1-29. doi: 10.24033/asens.1522. Google Scholar

[14]

J. C. Yoccoz, Analytic linearization of circle diffeomorphisms in Dynamical Systems and Small Divisors (Lecture Notes in Mathematics), Springer, Berlin, 1784 (2002), 125-173. doi: 10.1007/978-3-540-47928-4_3. Google Scholar

[1]

S. R. Bullett and W. J. Harvey. Mating quadratic maps with Kleinian groups via quasiconformal surgery. Electronic Research Announcements, 2000, 6: 21-30.

[2]

Canela Jordi. Singular perturbations of Blaschke products and connectivity of Fatou components. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3567-3585. doi: 10.3934/dcds.2017153

[3]

Gaven J. Martin. The Hilbert-Smith conjecture for quasiconformal actions. Electronic Research Announcements, 1999, 5: 66-70.

[4]

Shengliang Pan, Deyan Zhang, Zhongjun Chao. A generalization of the Blaschke-Lebesgue problem to a kind of convex domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1587-1601. doi: 10.3934/dcdsb.2016012

[5]

Yong Fang. Quasiconformal Anosov flows and quasisymmetric rigidity of Hamenst$\ddot{a}$dt distances. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3471-3483. doi: 10.3934/dcds.2014.34.3471

[6]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[7]

Genady Ya. Grabarnik, Misha Guysinsky. Livšic theorem for banach rings. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4379-4390. doi: 10.3934/dcds.2017187

[8]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[9]

Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465

[10]

Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257

[11]

Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221

[12]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[13]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[14]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[15]

Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901

[16]

M. DeDeo, M. Martínez, A. Medrano, M. Minei, H. Stark, A. Terras. Spectra of Heisenberg graphs over finite rings. Conference Publications, 2003, 2003 (Special) : 213-222. doi: 10.3934/proc.2003.2003.213

[17]

M. F. Newman and Michael Vaughan-Lee. Some Lie rings associated with Burnside groups. Electronic Research Announcements, 1998, 4: 1-3.

[18]

Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253

[19]

Delphine Boucher, Patrick Solé, Felix Ulmer. Skew constacyclic codes over Galois rings. Advances in Mathematics of Communications, 2008, 2 (3) : 273-292. doi: 10.3934/amc.2008.2.273

[20]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (29)
  • HTML views (36)
  • Cited by (0)

Other articles
by authors

[Back to Top]