-
Previous Article
Existence and properties of ancient solutions of the Yamabe flow
- DCDS Home
- This Issue
-
Next Article
Surgery on Herman rings of the standard Blaschke family
Regularity of elliptic systems in divergence form with directional homogenization
1. | School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China |
2. | Department of Mathematics, University of Iowa, Iowa City, IA 52242-1419, USA |
In this paper, we study regularity of solutions of elliptic systems in divergence form with directional homogenization. Here directional homogenization means that the coefficients of equations are rapidly oscillating only in some directions. We will investigate the different regularity of solutions on directions with homogenization and without homogenization. Actually, we obtain uniform interior $W^{1, p}$ estimates in all directions and uniform interior $C^{1, γ}$ estimates in the directions without homogenization.
References:
[1] |
M. Avellaneda and F. H. Lin,
Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607. |
[2] |
M. Avellaneda and F. H. Lin,
$L^p$ bounds on singular integrals in homogenization, Comm. Pure Appl. Math., 44 (1991), 897-910.
doi: 10.1002/cpa.3160440805. |
[3] |
A. Bensoussan, J. L. Lions and G. Papanicolaou,
Asymptotic Analysis for Periodic Structures North-Holland Publ, 1978. |
[4] |
M. SH. Birman and M. Solomyak,
On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential, J. Anal. Math., 83 (2001), 337-391.
doi: 10.1007/BF02790267. |
[5] |
R. Bunoiu, G. Cardone and T. Suslina,
Spectral approach to homogenization of an elliptic operator periodic in some directions, Math. Meth. Appl. Sci., 34 (2011), 1075-1096.
doi: 10.1002/mma.1424. |
[6] |
M. Chipot, D. Kinderlehrer and G. V. Caffarelli,
Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81-96.
doi: 10.1007/BF00251414. |
[7] |
H. Dong,
Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Rational Mech. Anal., 205 (2012), 119-149.
doi: 10.1007/s00205-012-0501-z. |
[8] |
H. Dong and S. Kim,
Partial schauder estimates for second-order elliptic and parabolic equations, Calc. Var. Partial Differential Equations, 40 (2011), 481-500.
doi: 10.1007/s00526-010-0348-9. |
[9] |
H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations: A revisit, preprint, arXiv: 1502. 00886v1 (2015). Google Scholar |
[10] |
M. Giaquinta,
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems volume 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983. |
[11] |
C. E. Kenig, F. H. Lin and Z. W. Shen,
Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937.
doi: 10.1090/S0894-0347-2013-00769-9. |
[12] |
Y. Y. Li and L. Nirenberg,
Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., 56 (2003), 892-925.
doi: 10.1002/cpa.10079. |
[13] |
T. A. Suslina,
On homogenization for a periodic elliptic operator in a strip, St. Petersburg. Math. J., 16 (2004), 237-257.
doi: 10.1090/S1061-0022-04-00849-0. |
[14] |
K. Yoshitomi,
Band gap of the spectrum in periodically curved quantum waveduides, J. Differential Equations, 142 (1998), 123-166.
doi: 10.1006/jdeq.1997.3337. |
show all references
References:
[1] |
M. Avellaneda and F. H. Lin,
Compactness methods in the theory of homogenization, Comm. Pure Appl. Math., 40 (1987), 803-847.
doi: 10.1002/cpa.3160400607. |
[2] |
M. Avellaneda and F. H. Lin,
$L^p$ bounds on singular integrals in homogenization, Comm. Pure Appl. Math., 44 (1991), 897-910.
doi: 10.1002/cpa.3160440805. |
[3] |
A. Bensoussan, J. L. Lions and G. Papanicolaou,
Asymptotic Analysis for Periodic Structures North-Holland Publ, 1978. |
[4] |
M. SH. Birman and M. Solomyak,
On the negative discrete spectrum of a periodic elliptic operator in a waveguide-type domain, perturbed by a decaying potential, J. Anal. Math., 83 (2001), 337-391.
doi: 10.1007/BF02790267. |
[5] |
R. Bunoiu, G. Cardone and T. Suslina,
Spectral approach to homogenization of an elliptic operator periodic in some directions, Math. Meth. Appl. Sci., 34 (2011), 1075-1096.
doi: 10.1002/mma.1424. |
[6] |
M. Chipot, D. Kinderlehrer and G. V. Caffarelli,
Smoothness of linear laminates, Arch. Rational Mech. Anal., 96 (1986), 81-96.
doi: 10.1007/BF00251414. |
[7] |
H. Dong,
Gradient estimates for parabolic and elliptic systems from linear laminates, Arch. Rational Mech. Anal., 205 (2012), 119-149.
doi: 10.1007/s00205-012-0501-z. |
[8] |
H. Dong and S. Kim,
Partial schauder estimates for second-order elliptic and parabolic equations, Calc. Var. Partial Differential Equations, 40 (2011), 481-500.
doi: 10.1007/s00526-010-0348-9. |
[9] |
H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations: A revisit, preprint, arXiv: 1502. 00886v1 (2015). Google Scholar |
[10] |
M. Giaquinta,
Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems volume 105 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1983. |
[11] |
C. E. Kenig, F. H. Lin and Z. W. Shen,
Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26 (2013), 901-937.
doi: 10.1090/S0894-0347-2013-00769-9. |
[12] |
Y. Y. Li and L. Nirenberg,
Estimates for elliptic systems from composite material, Comm. Pure Appl. Math., 56 (2003), 892-925.
doi: 10.1002/cpa.10079. |
[13] |
T. A. Suslina,
On homogenization for a periodic elliptic operator in a strip, St. Petersburg. Math. J., 16 (2004), 237-257.
doi: 10.1090/S1061-0022-04-00849-0. |
[14] |
K. Yoshitomi,
Band gap of the spectrum in periodically curved quantum waveduides, J. Differential Equations, 142 (1998), 123-166.
doi: 10.1006/jdeq.1997.3337. |
[1] |
Leon Mons. Partial regularity for parabolic systems with VMO-coefficients. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021041 |
[2] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[3] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[4] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[5] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[6] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385 |
[7] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[8] |
Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021040 |
[9] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[10] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[11] |
Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021018 |
[12] |
Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190 |
[13] |
Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021037 |
[14] |
John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023 |
[15] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[16] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036 |
[17] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[18] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[19] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[20] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]