Let $n≥ 3$ and $m=\frac{n-2}{n+2}$. We construct $5$-parameters, $4$-parameters, and $3$-parameters ancient solutions of the equation $v_t=(v^m)_{xx}+v-v^m$, $v>0$, in $\mathbb{R}× (-∞, T)$ for some $T∈\mathbb{R}$. This equation arises in the study of Yamabe flow. We obtain various properties of the ancient solutions of this equation including exact decay rate of ancient solutions as $|x|\to∞$. We also prove that both the $3$-parameters ancient solution and the $4$-parameters ancient solution are singular limit solution of the $5$-parameters ancient solutions. We also prove the uniqueness of the $4$-parameters ancient solutions. As a consequence we prove that the $4$-parameters ancient solutions that we construct coincide with the $4$-parameters ancient solutions constructed by P. Daskalopoulos, M. del Pino, J. King, and N. Sesum in [
Citation: |
S. Angenent
, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988)
, 79-96.
doi: 10.1515/crll.1988.390.79.![]() ![]() ![]() |
|
S. Brendle
, Convergence of the Yamabe flow for arbitrary energy, J. Differential Geom., 69 (2005)
, 217-278.
doi: 10.4310/jdg/1121449107.![]() ![]() ![]() |
|
S. Brendle
, Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007)
, 541-576.
doi: 10.1007/s00222-007-0074-x.![]() ![]() ![]() |
|
X. Y. Chen
and P. Poláčik
, Asymptotic periodicity of positive solutions of a diffusion equation on a ball, J. Reine Angew. Math., 472 (1996)
, 17-51.
![]() |
|
B. E. J. Dahlberg
and C. Kenig
, Nonnegative solutions of the generalized porous medium equations, Revista Matemática Iberoamericana, 2 (1986)
, 267-305.
![]() ![]() |
|
P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow,
arXiv: 1306. 0859v1.
![]() |
|
P. Daskalopoulos
, M. del Pino
, J. King
and N. Sesum
, Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Analysis, Theory, Methods and Applications, 137 (2016)
, 338-356.
doi: 10.1016/j.na.2015.12.005.![]() ![]() ![]() |
|
P. Daskalopoulos, M. del Pino, J. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, arXiv: 1601. 05349v1.
![]() |
|
F. Hamel
and N. Nadirashvili
, Entire solutions of the KPP equation, Comm. Pure and Applied Math., 52 (1999)
, 1255-1276.
doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.![]() ![]() ![]() |
|
S. Y. Hsu
, Asymptotic behaviour of solutions of the equation $u_t=Δ\log u$ near the extinction time, Adv. Differential Equations, 8 (2003)
, 161-187.
![]() ![]() |
|
S. Y. Hsu
, Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Analysis TMA, 75 (2012)
, 3443-3455.
doi: 10.1016/j.na.2012.01.009.![]() ![]() ![]() |
|
S. Y. Hsu
, Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014)
, 307-321.
doi: 10.1007/s00526-012-0583-3.![]() ![]() ![]() |
|
K. M. Hui
, Existence of solutions of the equation $u_t=Δ\log u$, Nonlinear Analysis TMA, 37 (1999)
, 875-914.
doi: 10.1016/S0362-546X(98)00081-9.![]() ![]() ![]() |
|
O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva,
Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. , Amer. Math. Soc. , Providence, R. I. , USA, 1968.
![]() ![]() |
|
H. Matano
, Nonincrease of the lap number of a solution for one dimensional semi-linear
parabolic, equations, J. Fac. Sci. Univ. Tokyo, Sec., 29 (1982)
, 401-441.
![]() ![]() |
|
A. de Pablo
and J. L. Vazquez
, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991)
, 19-61.
doi: 10.1016/0022-0396(91)90021-Z.![]() ![]() ![]() |
|
M. del Pino
and M. Sáez
, On the extinction profile for solutions of $u_t=Δ u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001)
, 611-628.
doi: 10.1512/iumj.2001.50.1876.![]() ![]() ![]() |
|
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov,
Blow-up in Quasilinear Parabolic Equations Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864.![]() ![]() |