Advanced Search
Article Contents
Article Contents

Existence and properties of ancient solutions of the Yamabe flow

Abstract Full Text(HTML) Related Papers Cited by
  • Let $n≥ 3$ and $m=\frac{n-2}{n+2}$. We construct $5$-parameters, $4$-parameters, and $3$-parameters ancient solutions of the equation $v_t=(v^m)_{xx}+v-v^m$, $v>0$, in $\mathbb{R}× (-∞, T)$ for some $T∈\mathbb{R}$. This equation arises in the study of Yamabe flow. We obtain various properties of the ancient solutions of this equation including exact decay rate of ancient solutions as $|x|\to∞$. We also prove that both the $3$-parameters ancient solution and the $4$-parameters ancient solution are singular limit solution of the $5$-parameters ancient solutions. We also prove the uniqueness of the $4$-parameters ancient solutions. As a consequence we prove that the $4$-parameters ancient solutions that we construct coincide with the $4$-parameters ancient solutions constructed by P. Daskalopoulos, M. del Pino, J. King, and N. Sesum in [8].

    Mathematics Subject Classification: Primary:35K55, 53C44;Secondary:35A01, 35B44.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   S. Angenent , The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390 (1988) , 79-96.  doi: 10.1515/crll.1988.390.79.
      S. Brendle , Convergence of the Yamabe flow for arbitrary energy, J. Differential Geom., 69 (2005) , 217-278.  doi: 10.4310/jdg/1121449107.
      S. Brendle , Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math., 170 (2007) , 541-576.  doi: 10.1007/s00222-007-0074-x.
      X. Y. Chen  and  P. Poláčik , Asymptotic periodicity of positive solutions of a diffusion equation on a ball, J. Reine Angew. Math., 472 (1996) , 17-51. 
      B. E. J. Dahlberg  and  C. Kenig , Nonnegative solutions of the generalized porous medium equations, Revista Matemática Iberoamericana, 2 (1986) , 267-305. 
      P. Daskalopoulos, J. King and N. Sesum, Extinction profile of complete non-compact solutions to the Yamabe flow, arXiv: 1306. 0859v1.
      P. Daskalopoulos , M. del Pino , J. King  and  N. Sesum , Type Ⅰ ancient compact solutions of the Yamabe flow, Nonlinear Analysis, Theory, Methods and Applications, 137 (2016) , 338-356.  doi: 10.1016/j.na.2015.12.005.
      P. Daskalopoulos, M. del Pino, J. King and N. Sesum, New type Ⅰ ancient compact solutions of the Yamabe flow, arXiv: 1601. 05349v1.
      F. Hamel  and  N. Nadirashvili , Entire solutions of the KPP equation, Comm. Pure and Applied Math., 52 (1999) , 1255-1276.  doi: 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W.
      S. Y. Hsu , Asymptotic behaviour of solutions of the equation $u_t=Δ\log u$ near the extinction time, Adv. Differential Equations, 8 (2003) , 161-187. 
      S. Y. Hsu , Singular limit and exact decay rate of a nonlinear elliptic equation, Nonlinear Analysis TMA, 75 (2012) , 3443-3455.  doi: 10.1016/j.na.2012.01.009.
      S. Y. Hsu , Some properties of the Yamabe soliton and the related nonlinear elliptic equation, Calc. Var. Partial Differential Equations, 49 (2014) , 307-321.  doi: 10.1007/s00526-012-0583-3.
      K. M. Hui , Existence of solutions of the equation $u_t=Δ\log u$, Nonlinear Analysis TMA, 37 (1999) , 875-914.  doi: 10.1016/S0362-546X(98)00081-9.
      O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono. , Amer. Math. Soc. , Providence, R. I. , USA, 1968.
      H. Matano , Nonincrease of the lap number of a solution for one dimensional semi-linear parabolic, equations, J. Fac. Sci. Univ. Tokyo, Sec., 29 (1982) , 401-441. 
      A. de Pablo  and  J. L. Vazquez , Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991) , 19-61.  doi: 10.1016/0022-0396(91)90021-Z.
      M. del Pino  and  M. Sáez , On the extinction profile for solutions of $u_t=Δ u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001) , 611-628.  doi: 10.1512/iumj.2001.50.1876.
      A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations Walter de Gruyter, Berlin, 1995. doi: 10.1515/9783110889864.
  • 加载中

Article Metrics

HTML views(267) PDF downloads(177) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint