January  2018, 38(1): 131-154. doi: 10.3934/dcds.2018006

Invariant curves of smooth quasi-periodic mappings

1. 

School of Mathematics Sciences, Beijing Normal University, Beijing, 100875, China

2. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China

* Corresponding author

Received  September 2016 Revised  August 2017 Published  September 2017

Fund Project: The second author is supported by the NSFC (11571041) and the Fundamental Research Funds for the Central Universities. The third author is supported by the NSFC (11231001).

In this paper we are concerned with the existence of invariant curves of planar mappings which are quasi-periodic in the spatial variable, satisfy the intersection property, $\mathcal{C}^{p}$ smooth with $p>2n+1$, $n$ is the number of frequencies.

Citation: Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006
References:
[1]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104. 

[3]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ, Astérisque 144 (1986), 248pp.

[4]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.

[5]

M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math. 69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746. doi: 10.1090/pspum/069/1858552.

[6]

B. Liu, Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.  doi: 10.1088/0951-7715/18/2/012.

[7]

J. Moser, On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20. 

[8]

J. Moser, A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535. 

[9]

J. Moser, A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.  doi: 10.1017/S0143385700009457.

[10]

H. Rüssmann, Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105. 

[11]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624. 

[12]

H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677-718.

[13]

C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995.

[14]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.  doi: 10.1002/cpa.3160280104.

[15]

V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.  doi: 10.1088/0951-7715/13/4/308.

show all references

References:
[1]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104. 

[3]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ, Astérisque 144 (1986), 248pp.

[4]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.

[5]

M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math. 69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746. doi: 10.1090/pspum/069/1858552.

[6]

B. Liu, Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.  doi: 10.1088/0951-7715/18/2/012.

[7]

J. Moser, On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20. 

[8]

J. Moser, A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535. 

[9]

J. Moser, A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.  doi: 10.1017/S0143385700009457.

[10]

H. Rüssmann, Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105. 

[11]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624. 

[12]

H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677-718.

[13]

C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995.

[14]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.  doi: 10.1002/cpa.3160280104.

[15]

V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.  doi: 10.1088/0951-7715/13/4/308.

[1]

Peng Huang. Existence of invariant curves for degenerate almost periodic reversible mappings. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022074

[2]

Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013

[3]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[4]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[5]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[6]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[7]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[8]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[9]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[10]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[11]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[12]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[13]

Jinhao Liang. Positive Lyapunov exponent for a class of quasi-periodic cocycles. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1361-1387. doi: 10.3934/dcds.2020080

[14]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[15]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[16]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[17]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[18]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[19]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[20]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (237)
  • HTML views (100)
  • Cited by (2)

Other articles
by authors

[Back to Top]