January  2018, 38(1): 131-154. doi: 10.3934/dcds.2018006

Invariant curves of smooth quasi-periodic mappings

1. 

School of Mathematics Sciences, Beijing Normal University, Beijing, 100875, China

2. 

School of Mathematical Sciences, Peking University, Beijing, 100871, China

* Corresponding author

Received  September 2016 Revised  August 2017 Published  September 2017

Fund Project: The second author is supported by the NSFC (11571041) and the Fundamental Research Funds for the Central Universities. The third author is supported by the NSFC (11231001).

In this paper we are concerned with the existence of invariant curves of planar mappings which are quasi-periodic in the spatial variable, satisfy the intersection property, $\mathcal{C}^{p}$ smooth with $p>2n+1$, $n$ is the number of frequencies.

Citation: Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006
References:
[1]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.  Google Scholar

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104.   Google Scholar

[3]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ, Astérisque 144 (1986), 248pp.  Google Scholar

[4]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.  Google Scholar

[5]

M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math. 69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746. doi: 10.1090/pspum/069/1858552.  Google Scholar

[6]

B. Liu, Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.  doi: 10.1088/0951-7715/18/2/012.  Google Scholar

[7]

J. Moser, On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20.   Google Scholar

[8]

J. Moser, A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535.   Google Scholar

[9]

J. Moser, A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.  doi: 10.1017/S0143385700009457.  Google Scholar

[10]

H. Rüssmann, Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105.   Google Scholar

[11]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624.   Google Scholar

[12]

H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677-718.  Google Scholar

[13]

C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995.  Google Scholar

[14]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.  doi: 10.1002/cpa.3160280104.  Google Scholar

[15]

V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.  doi: 10.1088/0951-7715/13/4/308.  Google Scholar

show all references

References:
[1]

L. Chierchia and D. Qian, Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.  doi: 10.1016/j.jde.2004.06.014.  Google Scholar

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104.   Google Scholar

[3]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ, Astérisque 144 (1986), 248pp.  Google Scholar

[4]

P. HuangX. Li and B. Liu, Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.  doi: 10.1088/0951-7715/29/10/3006.  Google Scholar

[5]

M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings, in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math. 69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746. doi: 10.1090/pspum/069/1858552.  Google Scholar

[6]

B. Liu, Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.  doi: 10.1088/0951-7715/18/2/012.  Google Scholar

[7]

J. Moser, On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20.   Google Scholar

[8]

J. Moser, A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535.   Google Scholar

[9]

J. Moser, A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.  doi: 10.1017/S0143385700009457.  Google Scholar

[10]

H. Rüssmann, Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105.   Google Scholar

[11]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624.   Google Scholar

[12]

H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture Notes in Math., Springer, Berlin, 1007 (1983), 677-718.  Google Scholar

[13]

C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995.  Google Scholar

[14]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.  doi: 10.1002/cpa.3160280104.  Google Scholar

[15]

V. Zharnitsky, Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.  doi: 10.1088/0951-7715/13/4/308.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[2]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[3]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[4]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

[5]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[6]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031

[7]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[8]

Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023

[9]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[10]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[11]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[12]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[13]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[14]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[15]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[16]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[17]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[18]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[19]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[20]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (111)
  • HTML views (94)
  • Cited by (2)

Other articles
by authors

[Back to Top]