-
Previous Article
An application of lattice points counting to shrinking target problems
- DCDS Home
- This Issue
-
Next Article
Existence and properties of ancient solutions of the Yamabe flow
Invariant curves of smooth quasi-periodic mappings
1. | School of Mathematics Sciences, Beijing Normal University, Beijing, 100875, China |
2. | School of Mathematical Sciences, Peking University, Beijing, 100871, China |
In this paper we are concerned with the existence of invariant curves of planar mappings which are quasi-periodic in the spatial variable, satisfy the intersection property, $\mathcal{C}^{p}$ smooth with $p>2n+1$, $n$ is the number of frequencies.
References:
[1] |
L. Chierchia and D. Qian,
Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.
doi: 10.1016/j.jde.2004.06.014. |
[2] |
M. R. Herman,
Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104.
|
[3] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ,
Astérisque 144 (1986), 248pp. |
[4] |
P. Huang, X. Li and B. Liu,
Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.
doi: 10.1088/0951-7715/29/10/3006. |
[5] |
M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings,
in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math.
69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746.
doi: 10.1090/pspum/069/1858552. |
[6] |
B. Liu,
Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.
doi: 10.1088/0951-7715/18/2/012. |
[7] |
J. Moser,
On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20.
|
[8] |
J. Moser,
A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535.
|
[9] |
J. Moser,
A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.
doi: 10.1017/S0143385700009457. |
[10] |
H. Rüssmann,
Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105.
|
[11] |
H. Rüssmann,
On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624.
|
[12] |
H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture
Notes in Math., Springer, Berlin, 1007 (1983), 677-718. |
[13] |
C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995. |
[14] |
E. Zehnder,
Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.
doi: 10.1002/cpa.3160280104. |
[15] |
V. Zharnitsky,
Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.
doi: 10.1088/0951-7715/13/4/308. |
show all references
References:
[1] |
L. Chierchia and D. Qian,
Moser's theorem for lower dimensional tori, J. Differential Equations, 206 (2004), 55-93.
doi: 10.1016/j.jde.2004.06.014. |
[2] |
M. R. Herman,
Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅰ, Astérisque, (1983), 103-104.
|
[3] |
M. R. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau Ⅱ,
Astérisque 144 (1986), 248pp. |
[4] |
P. Huang, X. Li and B. Liu,
Quasi-periodic solutions for an asymmetric oscillation, Nonlinearity, 29 (2016), 3006-3030.
doi: 10.1088/0951-7715/29/10/3006. |
[5] |
M. Levi and J. Moser, A Lagrangian proof of the invariant curve theorem for twist mappings,
in Smooth Ergodic Theory and its Applications, (Seattle, WA, 1999) (Proc. Symp. Pure Math.
69), (Providence, RI: American Mathematical Society), 69 (2001), 733-746.
doi: 10.1090/pspum/069/1858552. |
[6] |
B. Liu,
Invariant curves of quasi-periodic reversible mapping, Nonlinearity, 18 (2005), 685-701.
doi: 10.1088/0951-7715/18/2/012. |
[7] |
J. Moser,
On invariant curves of area-perserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. -Phys., 1962 (1962), 1-20.
|
[8] |
J. Moser,
A rapidly convergent iteration method and nonlinear differential equations Ⅱ, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499-535.
|
[9] |
J. Moser,
A stability theorem for minimal foliations on a torus, Ergod Theory Dynam. Syst., 8 (1988), 251-281.
doi: 10.1017/S0143385700009457. |
[10] |
H. Rüssmann,
Kleine Nenner Ⅰ: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. Ⅱ, 1970 (1970), 67-105.
|
[11] |
H. Rüssmann,
On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus, Dynamical systems theory and applications, 38 (1975), 598-624.
|
[12] |
H. Rüssmann,On the existence of invariant curves of twist mappings of an annulus, Lecture
Notes in Math., Springer, Berlin, 1007 (1983), 677-718. |
[13] |
C. Siegel and J. Moser, Lectures on celestial mechanics, Springer, Berlin, 1995. |
[14] |
E. Zehnder,
Generalized implicit function theorems with applications to some small divisor problems Ⅰ, Comm. Pure Appl. Math., 28 (1975), 91-140.
doi: 10.1002/cpa.3160280104. |
[15] |
V. Zharnitsky,
Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi-Ulam problem, Nonlinearity, 13 (2000), 1123-1136.
doi: 10.1088/0951-7715/13/4/308. |
[1] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[2] |
Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021075 |
[5] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[6] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-Gordon equation. Journal of Geometric Mechanics, 2021, 13 (1) : 73-143. doi: 10.3934/jgm.2020023 |
[9] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[10] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[11] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[12] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[13] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[14] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[15] |
Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026 |
[16] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[17] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[18] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[19] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[20] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]