We apply lattice points counting results to solve a shrinking target problem in the setting of discrete time geodesic flows on hyperbolic manifolds of finite volume.
Citation: |
J. Athreya
, Logarithm laws and shrinking target properties, Proc. Indian Acad. (Math. Sci.), 119 (2009)
, 541-557.
doi: 10.1007/s12044-009-0044-x.![]() ![]() ![]() |
|
_____, Cusp excursions on parameter spaces, J. Lond. Math. Soc. , 87 (2013), 741–765
![]() |
|
Y. Benoist
and H. Oh
, Effective equidistribution of $S$-integral points on symmetric varieties, Annales de L'Institut Fourier, 62 (2012)
, 1889-1942.
doi: 10.5802/aif.2738.![]() ![]() ![]() |
|
N. Chernov
and D. Kleinbock
, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001)
, 1-27.
doi: 10.1007/BF02809888.![]() ![]() ![]() |
|
D. Dolgopyat
, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004)
, 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X.![]() ![]() ![]() |
|
S. Galatolo
, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007)
, 797-805.
doi: 10.4310/MRL.2007.v14.n5.a8.![]() ![]() ![]() |
|
A. Gorodnik
and A. Nevo
, Counting lattice points, J. Reine Angew. Math., 663 (2012)
, 127-176.
doi: 10.1515/CRELLE.2011.096.![]() ![]() ![]() |
|
A. Gorodnik
and N. Shah
, Khinchin's theorem for approximation by integral points on quadratic varieties, Math. Ann., 350 (2011)
, 357-380.
doi: 10.1007/s00208-010-0561-z.![]() ![]() ![]() |
|
N. Haydn
, M. Nicol
, T. Persson
and S. Vaienti
, A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013)
, 475-498.
doi: 10.1017/S014338571100099X.![]() ![]() ![]() |
|
H. Huber
, Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv., 30 (1956)
, 20-62.
doi: 10.1007/BF02564331.![]() ![]() ![]() |
|
D. Y. Kleinbock
and G. A. Margulis
, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999)
, 451-494.
doi: 10.1007/s002220050350.![]() ![]() ![]() |
|
P. Lax
and R. Phillips
, The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, J. Funct. Anal., 46 (1982)
, 280-350.
doi: 10.1016/0022-1236(82)90050-7.![]() ![]() ![]() |
|
F. Maucourant
, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152 (2006)
, 143-155.
doi: 10.1007/BF02771980.![]() ![]() ![]() |
|
C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987.
doi: 10.1007/978-1-4612-4722-7_6.![]() ![]() ![]() |
|
W. Philipp
, Some metrical theorems in number theory, Pacific J. Math., 20 (1967)
, 109-127.
doi: 10.2140/pjm.1967.20.109.![]() ![]() ![]() |
|
M. Ratner
, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987)
, 267-288.
doi: 10.1017/S0143385700004004.![]() ![]() ![]() |
|
D. Sullivan
, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Math., 149 (1982)
, 215-237.
doi: 10.1007/BF02392354.![]() ![]() ![]() |