January  2018, 38(1): 155-168. doi: 10.3934/dcds.2018007

An application of lattice points counting to shrinking target problems

Brandeis University, Waltham MA, 02454, USA

* Corresponding author: Dmitry Kleinbock

Received  January 2017 Revised  July 2017 Published  September 2017

Fund Project: The first-named author was supported by NSF grants DMS-1101320 and DMS-1600814.

We apply lattice points counting results to solve a shrinking target problem in the setting of discrete time geodesic flows on hyperbolic manifolds of finite volume.

Citation: Dmitry Kleinbock, Xi Zhao. An application of lattice points counting to shrinking target problems. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 155-168. doi: 10.3934/dcds.2018007
References:
[1]

J. Athreya, Logarithm laws and shrinking target properties, Proc. Indian Acad. (Math. Sci.), 119 (2009), 541-557.  doi: 10.1007/s12044-009-0044-x.  Google Scholar

[2]

_____, Cusp excursions on parameter spaces, J. Lond. Math. Soc. , 87 (2013), 741–765 Google Scholar

[3]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Annales de L'Institut Fourier, 62 (2012), 1889-1942.  doi: 10.5802/aif.2738.  Google Scholar

[4]

N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.  doi: 10.1007/BF02809888.  Google Scholar

[5]

D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689.  doi: 10.1090/S0002-9947-03-03335-X.  Google Scholar

[6]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[7]

A. Gorodnik and A. Nevo, Counting lattice points, J. Reine Angew. Math., 663 (2012), 127-176.  doi: 10.1515/CRELLE.2011.096.  Google Scholar

[8]

A. Gorodnik and N. Shah, Khinchin's theorem for approximation by integral points on quadratic varieties, Math. Ann., 350 (2011), 357-380.  doi: 10.1007/s00208-010-0561-z.  Google Scholar

[9]

N. HaydnM. NicolT. Persson and S. Vaienti, A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013), 475-498.  doi: 10.1017/S014338571100099X.  Google Scholar

[10]

H. Huber, Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv., 30 (1956), 20-62.  doi: 10.1007/BF02564331.  Google Scholar

[11]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[12]

P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, J. Funct. Anal., 46 (1982), 280-350.  doi: 10.1016/0022-1236(82)90050-7.  Google Scholar

[13]

F. Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152 (2006), 143-155.  doi: 10.1007/BF02771980.  Google Scholar

[14]

C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987. doi: 10.1007/978-1-4612-4722-7_6.  Google Scholar

[15]

W. Philipp, Some metrical theorems in number theory, Pacific J. Math., 20 (1967), 109-127.  doi: 10.2140/pjm.1967.20.109.  Google Scholar

[16]

M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.  doi: 10.1017/S0143385700004004.  Google Scholar

[17]

D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.  doi: 10.1007/BF02392354.  Google Scholar

show all references

References:
[1]

J. Athreya, Logarithm laws and shrinking target properties, Proc. Indian Acad. (Math. Sci.), 119 (2009), 541-557.  doi: 10.1007/s12044-009-0044-x.  Google Scholar

[2]

_____, Cusp excursions on parameter spaces, J. Lond. Math. Soc. , 87 (2013), 741–765 Google Scholar

[3]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties, Annales de L'Institut Fourier, 62 (2012), 1889-1942.  doi: 10.5802/aif.2738.  Google Scholar

[4]

N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math., 122 (2001), 1-27.  doi: 10.1007/BF02809888.  Google Scholar

[5]

D. Dolgopyat, Limit theorems for partially hyperbolic systems, Trans. Amer. Math. Soc., 356 (2004), 1637-1689.  doi: 10.1090/S0002-9947-03-03335-X.  Google Scholar

[6]

S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.  doi: 10.4310/MRL.2007.v14.n5.a8.  Google Scholar

[7]

A. Gorodnik and A. Nevo, Counting lattice points, J. Reine Angew. Math., 663 (2012), 127-176.  doi: 10.1515/CRELLE.2011.096.  Google Scholar

[8]

A. Gorodnik and N. Shah, Khinchin's theorem for approximation by integral points on quadratic varieties, Math. Ann., 350 (2011), 357-380.  doi: 10.1007/s00208-010-0561-z.  Google Scholar

[9]

N. HaydnM. NicolT. Persson and S. Vaienti, A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems, 33 (2013), 475-498.  doi: 10.1017/S014338571100099X.  Google Scholar

[10]

H. Huber, Über eine neue Klasse automorpher Functionen und eine Gitterpunktproblem in der hyperbolischen Ebene, Comment. Math. Helv., 30 (1956), 20-62.  doi: 10.1007/BF02564331.  Google Scholar

[11]

D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.  doi: 10.1007/s002220050350.  Google Scholar

[12]

P. Lax and R. Phillips, The asymptotic distribution of lattice points in Euclidean and Non-Euclidean spaces, J. Funct. Anal., 46 (1982), 280-350.  doi: 10.1016/0022-1236(82)90050-7.  Google Scholar

[13]

F. Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math., 152 (2006), 143-155.  doi: 10.1007/BF02771980.  Google Scholar

[14]

C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in: Group representations, ergodic theory, operator algebras, and mathematical physics (Berkeley, CA, 1984), 163–181, Math. Sci. Res. Inst. Publ. 6, Springer, New York, 1987. doi: 10.1007/978-1-4612-4722-7_6.  Google Scholar

[15]

W. Philipp, Some metrical theorems in number theory, Pacific J. Math., 20 (1967), 109-127.  doi: 10.2140/pjm.1967.20.109.  Google Scholar

[16]

M. Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, 7 (1987), 267-288.  doi: 10.1017/S0143385700004004.  Google Scholar

[17]

D. Sullivan, Disjoint spheres, approximation by quadratic numbers and the logarithm law for geodesics, Acta Math., 149 (1982), 215-237.  doi: 10.1007/BF02392354.  Google Scholar

[1]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

[2]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[3]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[4]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[5]

Hirokazu Saito, Xin Zhang. Unique solvability of elliptic problems associated with two-phase incompressible flows in unbounded domains. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021051

[6]

Gheorghe Craciun, Jiaxin Jin, Polly Y. Yu. Single-target networks. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021065

[7]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[8]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[9]

Xingchun Wang, Yongjin Wang. Variance-optimal hedging for target volatility options. Journal of Industrial & Management Optimization, 2014, 10 (1) : 207-218. doi: 10.3934/jimo.2014.10.207

[10]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[11]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[12]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[13]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[14]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[15]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[16]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[17]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[18]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[19]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[20]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (122)
  • HTML views (88)
  • Cited by (3)

Other articles
by authors

[Back to Top]