January  2018, 38(1): 169-186. doi: 10.3934/dcds.2018008

Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic

1. 

Center for Mathematical Challenges, Korea Institute For Advanced Study, Seoul 02455, Korea

2. 

Department of Mathematical Sciences, Seoul National University, Seoul 08826, Korea

* Corresponding author: Seonhee Lim

Received  September 2016 Revised  July 2017 Published  September 2017

Fund Project: The second author is supported by Samsung Science and Technology Foundation under Project No. SSTF-BA1601-03 and is an associate member of KIAS.

For a local field K of formal Laurent series and its ring Z of polynomials, we prove a pointwise equidistribution with an error rate of each H-orbit in SL(d, K)/SL(d, Z) for a certain proper subgroup H of a horospherical group, extending a work of Kleinbock-Shi-Weiss.

We obtain an asymptotic formula for the number of integral solutions to the Diophantine inequalities with weights, generalizing a result of Dodson-Kristensen-Levesley. This result enables us to show pointwise equidistribution for unbounded functions of class Cα.

Citation: Sanghoon Kwon, Seonhee Lim. Equidistribution with an error rate and Diophantine approximation over a local field of positive characteristic. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 169-186. doi: 10.3934/dcds.2018008
References:
[1]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws Ⅱ, Monatsh Math., 167 (2012), 333-356.  doi: 10.1007/s00605-012-0376-y.  Google Scholar

[2]

J. AthreyaA. Parrish and J. Tseng, Ergodic theory and Diophantine approximation for linear forms and translation surfaces and linear forms, Nonlinearity, 29 (2016), 2173-2190.  doi: 10.1088/0951-7715/29/8/2173.  Google Scholar

[3]

M. DodsonS. Kristensen and J. Levesley, A quantitative Khintchine-Groshev type theorem over a field of formal series, Indag. Math. (N.S), 16 (2005), 171-177.  doi: 10.1016/S0019-3577(05)80020-5.  Google Scholar

[4]

M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (τ), preprint, arXiv: 1503.05884. Google Scholar

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Annals of Mathematics, 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[6]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, 124 (2007), 454-469.  doi: 10.1016/j.jnt.2006.10.009.  Google Scholar

[7]

D. Kleinbock and G. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, New York, 2012,385–396. Google Scholar

[8]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.  doi: 10.1007/s00208-016-1404-3.  Google Scholar

[9]

D. KleinbockR. Shi and G. Tomanov, s-adic version of Minkowskis geometry of numbers and Mahlers compactness criterion, J. Number Theory, 174 (2017), 150-163.  doi: 10.1016/j.jnt.2016.10.016.  Google Scholar

[10]

D. Kleinbock and G. Tomanov, Flows on s-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Coom. Math. Helv., 82 (2007), 519-581.  doi: 10.4171/CMH/102.  Google Scholar

[11]

A. Mohammadi, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dynamics, 5 (2011), 237-254.  doi: 10.3934/jmd.2011.5.237.  Google Scholar

[12]

M. Morishita, A mean value theorem in adele geometry, Algebraic number theory and Fermat’s problem, Sūrikaisekikenkyūsho Kkyōroku, (Japanese) (1995), 1-11. Google Scholar

[13]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192.  doi: 10.1215/S0012-7094-02-11314-3.  Google Scholar

[14]

M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York, 2002. Google Scholar

[15]

R. Rühr, Some Applications of Effective Unipotent Dynamics, Ph. D. Thesis, ETH Zurich, 2015. Google Scholar

[16]

N. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 105-125.  doi: 10.1007/BF02837164.  Google Scholar

[17]

R. Shi, Expanding cone and applications to homogeneous dynamics, preprint, arXiv: 1510.05256. Google Scholar

[18]

C. Siegel, Amean value theorem in geometry of numbers, Annals of Mathematics, 46 (1945), 340-347.  doi: 10.2307/1969027.  Google Scholar

[19]

V. Sprindzuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, DC, 1979. Google Scholar

[20]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. studies in Pure Math., 26 (2000), 265-297.   Google Scholar

show all references

References:
[1]

J. AthreyaA. Ghosh and A. Prasad, Ultrametric logarithm laws Ⅱ, Monatsh Math., 167 (2012), 333-356.  doi: 10.1007/s00605-012-0376-y.  Google Scholar

[2]

J. AthreyaA. Parrish and J. Tseng, Ergodic theory and Diophantine approximation for linear forms and translation surfaces and linear forms, Nonlinearity, 29 (2016), 2173-2190.  doi: 10.1088/0951-7715/29/8/2173.  Google Scholar

[3]

M. DodsonS. Kristensen and J. Levesley, A quantitative Khintchine-Groshev type theorem over a field of formal series, Indag. Math. (N.S), 16 (2005), 171-177.  doi: 10.1016/S0019-3577(05)80020-5.  Google Scholar

[4]

M. Einsiedler, G. Margulis, A. Mohammadi and A. Venkatesh, Effective equidistribution and property (τ), preprint, arXiv: 1503.05884. Google Scholar

[5]

A. EskinG. Margulis and S. Mozes, Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Annals of Mathematics, 147 (1998), 93-141.  doi: 10.2307/120984.  Google Scholar

[6]

A. Ghosh, Metric Diophantine approximation over a local field of positive characteristic, J. Number Theory, 124 (2007), 454-469.  doi: 10.1016/j.jnt.2006.10.009.  Google Scholar

[7]

D. Kleinbock and G. Margulis, On effective equidistribution of expanding translates of certain orbits in the space of lattices, in Number Theory, Analysis and Geometry, Springer, New York, 2012,385–396. Google Scholar

[8]

D. KleinbockR. Shi and B. Weiss, Pointwise equidistribution with an error rate and with respect to unbounded functions, Math. Ann., 367 (2017), 857-879.  doi: 10.1007/s00208-016-1404-3.  Google Scholar

[9]

D. KleinbockR. Shi and G. Tomanov, s-adic version of Minkowskis geometry of numbers and Mahlers compactness criterion, J. Number Theory, 174 (2017), 150-163.  doi: 10.1016/j.jnt.2016.10.016.  Google Scholar

[10]

D. Kleinbock and G. Tomanov, Flows on s-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Coom. Math. Helv., 82 (2007), 519-581.  doi: 10.4171/CMH/102.  Google Scholar

[11]

A. Mohammadi, Measures invariant under horospherical subgroups in positive characteristic, J. Mod. Dynamics, 5 (2011), 237-254.  doi: 10.3934/jmd.2011.5.237.  Google Scholar

[12]

M. Morishita, A mean value theorem in adele geometry, Algebraic number theory and Fermat’s problem, Sūrikaisekikenkyūsho Kkyōroku, (Japanese) (1995), 1-11. Google Scholar

[13]

H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., 113 (2002), 133-192.  doi: 10.1215/S0012-7094-02-11314-3.  Google Scholar

[14]

M. Rosen, Number Theory in Function Fields, Springer-Verlag, New York, 2002. Google Scholar

[15]

R. Rühr, Some Applications of Effective Unipotent Dynamics, Ph. D. Thesis, ETH Zurich, 2015. Google Scholar

[16]

N. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. (Math. Sci.), 106 (1996), 105-125.  doi: 10.1007/BF02837164.  Google Scholar

[17]

R. Shi, Expanding cone and applications to homogeneous dynamics, preprint, arXiv: 1510.05256. Google Scholar

[18]

C. Siegel, Amean value theorem in geometry of numbers, Annals of Mathematics, 46 (1945), 340-347.  doi: 10.2307/1969027.  Google Scholar

[19]

V. Sprindzuk, Metric Theory of Diophantine Approximations, V. H. Winston & Sons, Washington, DC, 1979. Google Scholar

[20]

G. Tomanov, Orbits on homogeneous spaces of arithmetic origin and approximations, Adv. studies in Pure Math., 26 (2000), 265-297.   Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[2]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[4]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[5]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[6]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[7]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[8]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[9]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[10]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[11]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003

[12]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[15]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[16]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021012

[17]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021014

[18]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (132)
  • HTML views (87)
  • Cited by (0)

Other articles
by authors

[Back to Top]