January  2018, 38(1): 209-230. doi: 10.3934/dcds.2018010

Single-point blow-up for a multi-component reaction-diffusion system

Université de Tunis El Manar, Faculté des Sciences de Tunis, Département de Mathématiques, Laboratoire Équations aux Dérivées Partielles LR03ES04, Tunis, 2092, Tunisie

Received  December 2016 Revised  July 2017 Published  September 2017

In this work, we prove single-point blow-up for any positive, radially decreasing, classical and blowing-up solution of a system of $m≥q3$ heat equations in a ball of $\mathbb{R}^n$, which are coupled cyclically by superlinear monomial reaction terms. We also obtain lower pointwise estimates for the blow-up profiles.

Citation: Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010
References:
[1]

X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differ. Equations, 78 (1989), 160-190.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[2]

F. Fila and P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl., 238 (1999), 468-476.  doi: 10.1006/jmaa.1999.6525.  Google Scholar

[3]

A. Friedman and Y. Giga, A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sec. IA. Math., 34 (1987), 65-79.   Google Scholar

[4]

A. Friedman and B. Mcleod, Blow-up of positive solution of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[5]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar

[6]

M. A. Herrero and J. J. A. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Preprint. Google Scholar

[7]

N. Mahmoudi, Single-point blow-up for a semilinear reaction-diffusion system, Differ. Equ. Appl., 6 (2014), 563-591.  doi: 10.7153/dea-06-33.  Google Scholar

[8]

N. MahmoudiPh. Souplet and S. Tayachi, Improved conditions for single-point blow-up in reaction-diffusion systems, J. Differ. Equations, 259 (2015), 1898-1932.  doi: 10.1016/j.jde.2015.03.024.  Google Scholar

[9]

H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.  Google Scholar

[10]

C. E. Mueller and F. B. Weissler, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math. J., 34 (1985), 881-913.  doi: 10.1512/iumj.1985.34.34049.  Google Scholar

[11]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems Blow-Up, Global Existence and Steady States, Birkhäuser Verlag AG, Basel Boston Berlin, 2007.  Google Scholar

[12]

J. Renclawowicz, Blow-up, global existence and growth rate estimates in nonlinear parabolic systems, Colloq. Math., 86 (2000), 43-66.   Google Scholar

[13]

J. Renclawowicz, Global existence and blow-up of solutions for a completely coupled Fujita type system, Appl. Math., 27 (2000), 203-218.   Google Scholar

[14]

Ph. Souplet, Single-point blow-up for a semilinear parabolic system, J. Eur. Math. Soc., 11 (2009), 169-188.  doi: 10.4171/JEMS/145.  Google Scholar

[15]

M. Wang, Blow-up rate for a semilinear reaction diffusion system, Comput. Math. Appl., 44 (2002), 573-585.  doi: 10.1016/S0898-1221(02)00172-4.  Google Scholar

[16]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differ. Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

show all references

References:
[1]

X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Differ. Equations, 78 (1989), 160-190.  doi: 10.1016/0022-0396(89)90081-8.  Google Scholar

[2]

F. Fila and P. Quittner, The blow-up rate for a semilinear parabolic system, J. Math. Anal. Appl., 238 (1999), 468-476.  doi: 10.1006/jmaa.1999.6525.  Google Scholar

[3]

A. Friedman and Y. Giga, A single point blow-up for solutions of semilinear parabolic systems, J. Fac. Sci. Univ. Tokyo Sec. IA. Math., 34 (1987), 65-79.   Google Scholar

[4]

A. Friedman and B. Mcleod, Blow-up of positive solution of semilinear heat equations, Indiana Univ. Math. J., 34 (1985), 425-447.  doi: 10.1512/iumj.1985.34.34025.  Google Scholar

[5]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar

[6]

M. A. Herrero and J. J. A. Velázquez, A blow up result for semilinear heat equations in the supercritical case, Preprint. Google Scholar

[7]

N. Mahmoudi, Single-point blow-up for a semilinear reaction-diffusion system, Differ. Equ. Appl., 6 (2014), 563-591.  doi: 10.7153/dea-06-33.  Google Scholar

[8]

N. MahmoudiPh. Souplet and S. Tayachi, Improved conditions for single-point blow-up in reaction-diffusion systems, J. Differ. Equations, 259 (2015), 1898-1932.  doi: 10.1016/j.jde.2015.03.024.  Google Scholar

[9]

H. Matano and F. Merle, On nonexistence of type Ⅱ blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math., 57 (2004), 1494-1541.  doi: 10.1002/cpa.20044.  Google Scholar

[10]

C. E. Mueller and F. B. Weissler, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math. J., 34 (1985), 881-913.  doi: 10.1512/iumj.1985.34.34049.  Google Scholar

[11]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems Blow-Up, Global Existence and Steady States, Birkhäuser Verlag AG, Basel Boston Berlin, 2007.  Google Scholar

[12]

J. Renclawowicz, Blow-up, global existence and growth rate estimates in nonlinear parabolic systems, Colloq. Math., 86 (2000), 43-66.   Google Scholar

[13]

J. Renclawowicz, Global existence and blow-up of solutions for a completely coupled Fujita type system, Appl. Math., 27 (2000), 203-218.   Google Scholar

[14]

Ph. Souplet, Single-point blow-up for a semilinear parabolic system, J. Eur. Math. Soc., 11 (2009), 169-188.  doi: 10.4171/JEMS/145.  Google Scholar

[15]

M. Wang, Blow-up rate for a semilinear reaction diffusion system, Comput. Math. Appl., 44 (2002), 573-585.  doi: 10.1016/S0898-1221(02)00172-4.  Google Scholar

[16]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differ. Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[1]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[4]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[5]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[6]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[7]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[8]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[9]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[10]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[11]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[12]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[13]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[17]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[18]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[19]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (94)
  • HTML views (62)
  • Cited by (2)

Other articles
by authors

[Back to Top]