January  2018, 38(1): 231-245. doi: 10.3934/dcds.2018011

Chaotic behavior of the P-adic Potts-Bethe mapping

1. 

Department of Mathematical Sciences, College of Science, The United Arab Emirates University, P.O. Box, 15551, Al Ain Abu Dhabi, UAE

2. 

Institute of Mathematics of Academy of Science of Uzbekistan, 29, Do'rmon Yo'li str., 100125, Tashkent, Uzbekistan

* Corresponding author: far75m@gmail.com

Received  December 2016 Revised  July 2017 Published  September 2017

Fund Project: The authors would like to thank an anonymous referee for his useful suggestions which allowed to improve the content of the paper.

In the previous investigations of the authors the renormalization group method to p-adic models on Cayley trees has been developed. This method is closely related to the investigation of p-adic dynamical systems associated with a given model. In this paper, we study chaotic behavior of the Potts-Bethe mapping. We point out that a similar kind of result is not known in the case of real numbers (with rigorous proofs).

Citation: Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011
References:
[1]

S. AlbeverioU. A. Rozikov and I. A. Sattarov, p-adic (2, 1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013), 553-566. doi: 10.1016/j.jmaa.2012.09.009. Google Scholar

[2]

N. S. AnanikianS. K. Dallakian and B. Hu, Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q <2, Complex Systems, 11 (1997), 213-222. Google Scholar

[3]

V. Anashin and A. Khrennikov, Applied Algebraic Dynamics Walter de Gruyter, Berlin, New York, 2009. doi: 10.1515/9783110203011. Google Scholar

[4]

R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001), 175-195. doi: 10.1006/jnth.2000.2577. Google Scholar

[5]

R. Benedetto, Hyperbolic maps in p-adic dynamics, Ergod. Th. & Dynam. Sys., 21 (2001), 1-11. doi: 10.1017/S0143385701001043. Google Scholar

[6]

F. A. Bosco and R. S. Jr Goulart, Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let., 4 (1987), 1103-1108. doi: 10.1209/0295-5075/4/10/004. Google Scholar

[7]

H. Diao and C. E. Silva, Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl., 3 (2011), 23-38. doi: 10.1134/S2070046611010031. Google Scholar

[8]

T. P. Eggarter, Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9 (1974), 2989-2992. doi: 10.1103/PhysRevB.9.2989. Google Scholar

[9]

A. H. FanL. M. LiaoY. F. Wang and D. Zhou, p-adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007), 219-224. doi: 10.1016/j.crma.2006.12.007. Google Scholar

[10]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math., 257 (2014), 92-135. Google Scholar

[11]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys., 37 (2017), 3161-3182. doi: 10.3934/dcds.2017135. Google Scholar

[12]

G. Gyorgyi, I. Kondor, L. Sasvari and T. Tel, From Phase Transitions to Chaos World Scientific, Singapore, 1992. doi: 10.1142/1633. Google Scholar

[13]

M. Herman and J. -C. Yoccoz, Generalizations of some theorems of small divisors to nonArchimedean fields, In: Geometric Dynamics (Rio de Janeiro 1981), Lec. Notes in Math. , Springer, Berlin, 1007 (1983), 408–447 doi: 10.1007/BFb0061427. Google Scholar

[14]

S. Kaplan, A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008), 181-193. doi: 10.1007/s12346-008-0010-5. Google Scholar

[15]

M. Khamraev and F. M. Mukhamedov, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl., 315 (2006), 76-89. doi: 10.1016/j.jmaa.2005.08.041. Google Scholar

[16]

N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-function Berlin, Springer, 1977. Google Scholar

[17]

J. Lubin, Nonarchimedean dynamical systems, Composito Math., 94 (1994), 321-346. Google Scholar

[18]

S. Ludkovsky and A. Yu. Khrennikov, Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields, 9 (2003), 131-162. Google Scholar

[19]

J. L. Monroe, Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001), 6405-6412. doi: 10.1088/0305-4470/34/33/305. Google Scholar

[20]

F. A. Mukhamedov, Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012), 385-406. doi: 10.1016/S0034-4877(12)60053-6. Google Scholar

[21]

F. Mukhamedov, On dynamical systems and phase transitions for q+1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013), 49-87. doi: 10.1007/s11040-012-9120-z. Google Scholar

[22]

F. Mukhamedov, Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015), 3577-3595. Google Scholar

[23]

F. Mukhamedov and H. Akin, Phase transitions for p-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014, 30pp. Google Scholar

[24]

F. Mukhamedov and O. Khakimov, Phase transition and chaos: $P$-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals, 87 (2016), 190-196. doi: 10.1016/j.chaos.2016.04.003. Google Scholar

[25]

F. Mukhamedov and O. Khakimov, On generalized self-similarity in p-adic field Fractals 24(2016), 1650041, 11pp. doi: 10.1142/S0218348X16500419. Google Scholar

[26]

F. Mukhamedov and O. Khakimov, On Julia set and chaos in p-adic Ising model on the Cayley tree, (submitted).Google Scholar

[27]

F. Mukhamedov and M. Saburov, On equation xq=a over ${\mathbb{Q}}_p$, J. Number Theor., 133 (2013), 55-58. Google Scholar

[28]

F. M. Mukhamedov and U. A. Rozikov, On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004), 21-31. Google Scholar

[29]

F. M. Mukhamedov and U. A. Rozikov, On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S., 15 (2004), 85-99. doi: 10.1016/S0019-3577(04)90007-9. Google Scholar

[30]

W. Y. QiuY. F. WangJ. H. Yang and Y. C. Yin, On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014), 386-401. doi: 10.1016/j.jmaa.2014.01.015. Google Scholar

[31]

J. Rivera-Letelier, Dynamics of rational functions over local fields, Astérisque, 287 (2003), 147-230. Google Scholar

[32]

U. A. Rozikov and O. N. Khakimov, Description of all translation-invariant $p$-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015), 177-204. Google Scholar

[33]

M. Saburov and M. A. Kh. Ahmad, On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three Math. Phys. Anal. Geom. 18(2015), Art. 26, 33 pp. doi: 10.1007/s11040-015-9194-5. Google Scholar

[34]

M. Saburov and M. A. Kh. Ahmad, The dynamics of the potts-bethe mapping over $\mathbb Q_p$: The case $p\equiv 2 (mod 3)$, J. Phys. : Conf. Ser. 819(2017), 012017.Google Scholar

[35]

J. H. Silverman, The Arithmetic of Dynamical Systems New York, Springer, 2007. doi: 10.1007/978-0-387-69904-2. Google Scholar

[36]

E. ThiranD. Verstegen and J. Weters, p-adic dynamics, J. Stat. Phys., 54 (1989), 893-913. doi: 10.1007/BF01019780. Google Scholar

[37]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-adic Analysis and Mathematical Physics World Scientific, Singapour, 1994. doi: 10.1142/1581. Google Scholar

[38]

C. F. Woodcock and N. P. Smart, p-adic chaos and random number generation, Experiment Math., 7 (1998), 333-342. doi: 10.1080/10586458.1998.10504379. Google Scholar

[39]

A. Yu. Khrennikov, p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996), 311-330. doi: 10.1016/0019-3577(96)83723-2. Google Scholar

[40]

A. Yu. Khrennikov, p-adic description of chaos, In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti. , World Scientific, Singapore, (1996), 177–184.Google Scholar

[41]

A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamical Systems Kluwer, Dordreht, 2004. doi: 10.1007/978-1-4020-2660-7. Google Scholar

show all references

References:
[1]

S. AlbeverioU. A. Rozikov and I. A. Sattarov, p-adic (2, 1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013), 553-566. doi: 10.1016/j.jmaa.2012.09.009. Google Scholar

[2]

N. S. AnanikianS. K. Dallakian and B. Hu, Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q <2, Complex Systems, 11 (1997), 213-222. Google Scholar

[3]

V. Anashin and A. Khrennikov, Applied Algebraic Dynamics Walter de Gruyter, Berlin, New York, 2009. doi: 10.1515/9783110203011. Google Scholar

[4]

R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001), 175-195. doi: 10.1006/jnth.2000.2577. Google Scholar

[5]

R. Benedetto, Hyperbolic maps in p-adic dynamics, Ergod. Th. & Dynam. Sys., 21 (2001), 1-11. doi: 10.1017/S0143385701001043. Google Scholar

[6]

F. A. Bosco and R. S. Jr Goulart, Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let., 4 (1987), 1103-1108. doi: 10.1209/0295-5075/4/10/004. Google Scholar

[7]

H. Diao and C. E. Silva, Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl., 3 (2011), 23-38. doi: 10.1134/S2070046611010031. Google Scholar

[8]

T. P. Eggarter, Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9 (1974), 2989-2992. doi: 10.1103/PhysRevB.9.2989. Google Scholar

[9]

A. H. FanL. M. LiaoY. F. Wang and D. Zhou, p-adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007), 219-224. doi: 10.1016/j.crma.2006.12.007. Google Scholar

[10]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math., 257 (2014), 92-135. Google Scholar

[11]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys., 37 (2017), 3161-3182. doi: 10.3934/dcds.2017135. Google Scholar

[12]

G. Gyorgyi, I. Kondor, L. Sasvari and T. Tel, From Phase Transitions to Chaos World Scientific, Singapore, 1992. doi: 10.1142/1633. Google Scholar

[13]

M. Herman and J. -C. Yoccoz, Generalizations of some theorems of small divisors to nonArchimedean fields, In: Geometric Dynamics (Rio de Janeiro 1981), Lec. Notes in Math. , Springer, Berlin, 1007 (1983), 408–447 doi: 10.1007/BFb0061427. Google Scholar

[14]

S. Kaplan, A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008), 181-193. doi: 10.1007/s12346-008-0010-5. Google Scholar

[15]

M. Khamraev and F. M. Mukhamedov, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl., 315 (2006), 76-89. doi: 10.1016/j.jmaa.2005.08.041. Google Scholar

[16]

N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-function Berlin, Springer, 1977. Google Scholar

[17]

J. Lubin, Nonarchimedean dynamical systems, Composito Math., 94 (1994), 321-346. Google Scholar

[18]

S. Ludkovsky and A. Yu. Khrennikov, Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields, 9 (2003), 131-162. Google Scholar

[19]

J. L. Monroe, Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001), 6405-6412. doi: 10.1088/0305-4470/34/33/305. Google Scholar

[20]

F. A. Mukhamedov, Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012), 385-406. doi: 10.1016/S0034-4877(12)60053-6. Google Scholar

[21]

F. Mukhamedov, On dynamical systems and phase transitions for q+1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013), 49-87. doi: 10.1007/s11040-012-9120-z. Google Scholar

[22]

F. Mukhamedov, Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015), 3577-3595. Google Scholar

[23]

F. Mukhamedov and H. Akin, Phase transitions for p-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014, 30pp. Google Scholar

[24]

F. Mukhamedov and O. Khakimov, Phase transition and chaos: $P$-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals, 87 (2016), 190-196. doi: 10.1016/j.chaos.2016.04.003. Google Scholar

[25]

F. Mukhamedov and O. Khakimov, On generalized self-similarity in p-adic field Fractals 24(2016), 1650041, 11pp. doi: 10.1142/S0218348X16500419. Google Scholar

[26]

F. Mukhamedov and O. Khakimov, On Julia set and chaos in p-adic Ising model on the Cayley tree, (submitted).Google Scholar

[27]

F. Mukhamedov and M. Saburov, On equation xq=a over ${\mathbb{Q}}_p$, J. Number Theor., 133 (2013), 55-58. Google Scholar

[28]

F. M. Mukhamedov and U. A. Rozikov, On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004), 21-31. Google Scholar

[29]

F. M. Mukhamedov and U. A. Rozikov, On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S., 15 (2004), 85-99. doi: 10.1016/S0019-3577(04)90007-9. Google Scholar

[30]

W. Y. QiuY. F. WangJ. H. Yang and Y. C. Yin, On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014), 386-401. doi: 10.1016/j.jmaa.2014.01.015. Google Scholar

[31]

J. Rivera-Letelier, Dynamics of rational functions over local fields, Astérisque, 287 (2003), 147-230. Google Scholar

[32]

U. A. Rozikov and O. N. Khakimov, Description of all translation-invariant $p$-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015), 177-204. Google Scholar

[33]

M. Saburov and M. A. Kh. Ahmad, On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three Math. Phys. Anal. Geom. 18(2015), Art. 26, 33 pp. doi: 10.1007/s11040-015-9194-5. Google Scholar

[34]

M. Saburov and M. A. Kh. Ahmad, The dynamics of the potts-bethe mapping over $\mathbb Q_p$: The case $p\equiv 2 (mod 3)$, J. Phys. : Conf. Ser. 819(2017), 012017.Google Scholar

[35]

J. H. Silverman, The Arithmetic of Dynamical Systems New York, Springer, 2007. doi: 10.1007/978-0-387-69904-2. Google Scholar

[36]

E. ThiranD. Verstegen and J. Weters, p-adic dynamics, J. Stat. Phys., 54 (1989), 893-913. doi: 10.1007/BF01019780. Google Scholar

[37]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-adic Analysis and Mathematical Physics World Scientific, Singapour, 1994. doi: 10.1142/1581. Google Scholar

[38]

C. F. Woodcock and N. P. Smart, p-adic chaos and random number generation, Experiment Math., 7 (1998), 333-342. doi: 10.1080/10586458.1998.10504379. Google Scholar

[39]

A. Yu. Khrennikov, p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996), 311-330. doi: 10.1016/0019-3577(96)83723-2. Google Scholar

[40]

A. Yu. Khrennikov, p-adic description of chaos, In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti. , World Scientific, Singapore, (1996), 177–184.Google Scholar

[41]

A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamical Systems Kluwer, Dordreht, 2004. doi: 10.1007/978-1-4020-2660-7. Google Scholar

[1]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[2]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[3]

Christian Wolf. A shift map with a discontinuous entropy function. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 319-329. doi: 10.3934/dcds.2020012

[4]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[5]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[6]

Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191

[7]

Sarah Bailey Frick. Limited scope adic transformations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 269-285. doi: 10.3934/dcdss.2009.2.269

[8]

Na Zhao, Zheng-Hai Huang. A nonmonotone smoothing Newton algorithm for solving box constrained variational inequalities with a $P_0$ function. Journal of Industrial & Management Optimization, 2011, 7 (2) : 467-482. doi: 10.3934/jimo.2011.7.467

[9]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[10]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[11]

Marco Scianna, Luigi Preziosi, Katarina Wolf. A Cellular Potts model simulating cell migration on and in matrix environments. Mathematical Biosciences & Engineering, 2013, 10 (1) : 235-261. doi: 10.3934/mbe.2013.10.235

[12]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[13]

Danny Calegari, Alden Walker. Ziggurats and rotation numbers. Journal of Modern Dynamics, 2011, 5 (4) : 711-746. doi: 10.3934/jmd.2011.5.711

[14]

Xavier Buff, Nataliya Goncharuk. Complex rotation numbers. Journal of Modern Dynamics, 2015, 9: 169-190. doi: 10.3934/jmd.2015.9.169

[15]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks & Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[16]

Bernard Bonnard, Thierry Combot, Lionel Jassionnesse. Integrability methods in the time minimal coherence transfer for Ising chains of three spins. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4095-4114. doi: 10.3934/dcds.2015.35.4095

[17]

Andrew Klapper. The asymptotic behavior of N-adic complexity. Advances in Mathematics of Communications, 2007, 1 (3) : 307-319. doi: 10.3934/amc.2007.1.307

[18]

Frédéric Bernicot, Bertrand Maury, Delphine Salort. A 2-adic approach of the human respiratory tree. Networks & Heterogeneous Media, 2010, 5 (3) : 405-422. doi: 10.3934/nhm.2010.5.405

[19]

Daniel Gonçalves, Marcelo Sobottka. Continuous shift commuting maps between ultragraph shift spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1033-1048. doi: 10.3934/dcds.2019043

[20]

Michael Schraudner. Projectional entropy and the electrical wire shift. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 333-346. doi: 10.3934/dcds.2010.26.333

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (25)
  • Cited by (1)

Other articles
by authors

[Back to Top]