In the previous investigations of the authors the renormalization group method to p-adic models on Cayley trees has been developed. This method is closely related to the investigation of p-adic dynamical systems associated with a given model. In this paper, we study chaotic behavior of the Potts-Bethe mapping. We point out that a similar kind of result is not known in the case of real numbers (with rigorous proofs).
Citation: |
S. Albeverio
, U. A. Rozikov
and I. A. Sattarov
, p-adic (2, 1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013)
, 553-566.
doi: 10.1016/j.jmaa.2012.09.009.![]() ![]() ![]() |
|
N. S. Ananikian
, S. K. Dallakian
and B. Hu
, Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q <2, Complex Systems, 11 (1997)
, 213-222.
![]() ![]() |
|
V. Anashin and A. Khrennikov, Applied Algebraic Dynamics Walter de Gruyter, Berlin, New York, 2009.
doi: 10.1515/9783110203011.![]() ![]() ![]() |
|
R. Benedetto
, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001)
, 175-195.
doi: 10.1006/jnth.2000.2577.![]() ![]() ![]() |
|
R. Benedetto
, Hyperbolic maps in p-adic dynamics, Ergod. Th. & Dynam. Sys., 21 (2001)
, 1-11.
doi: 10.1017/S0143385701001043.![]() ![]() ![]() |
|
F. A. Bosco
and R. S. Jr Goulart
, Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let., 4 (1987)
, 1103-1108.
doi: 10.1209/0295-5075/4/10/004.![]() ![]() |
|
H. Diao
and C. E. Silva
, Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl., 3 (2011)
, 23-38.
doi: 10.1134/S2070046611010031.![]() ![]() ![]() |
|
T. P. Eggarter
, Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9 (1974)
, 2989-2992.
doi: 10.1103/PhysRevB.9.2989.![]() ![]() |
|
A. H. Fan
, L. M. Liao
, Y. F. Wang
and D. Zhou
, p-adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007)
, 219-224.
doi: 10.1016/j.crma.2006.12.007.![]() ![]() ![]() |
|
A. H. Fan
, S. L. Fan
, L. M. Liao
and Y. F. Wang
, On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math., 257 (2014)
, 92-135.
![]() ![]() |
|
A. H. Fan
, S. L. Fan
, L. M. Liao
and Y. F. Wang
, Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys., 37 (2017)
, 3161-3182.
doi: 10.3934/dcds.2017135.![]() ![]() ![]() |
|
G. Gyorgyi, I. Kondor, L. Sasvari and T. Tel, From Phase Transitions to Chaos World Scientific, Singapore, 1992.
doi: 10.1142/1633.![]() ![]() |
|
M. Herman and J. -C. Yoccoz, Generalizations of some theorems of small divisors to nonArchimedean fields, In: Geometric Dynamics (Rio de Janeiro 1981), Lec. Notes in Math. , Springer, Berlin, 1007 (1983), 408–447
doi: 10.1007/BFb0061427.![]() ![]() ![]() |
|
S. Kaplan
, A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008)
, 181-193.
doi: 10.1007/s12346-008-0010-5.![]() ![]() ![]() |
|
M. Khamraev
and F. M. Mukhamedov
, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl., 315 (2006)
, 76-89.
doi: 10.1016/j.jmaa.2005.08.041.![]() ![]() ![]() |
|
N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-function Berlin, Springer, 1977.
![]() ![]() |
|
J. Lubin
, Nonarchimedean dynamical systems, Composito Math., 94 (1994)
, 321-346.
![]() ![]() |
|
S. Ludkovsky
and A. Yu. Khrennikov
, Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields, 9 (2003)
, 131-162.
![]() ![]() |
|
J. L. Monroe
, Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001)
, 6405-6412.
doi: 10.1088/0305-4470/34/33/305.![]() ![]() ![]() |
|
F. A. Mukhamedov
, Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012)
, 385-406.
doi: 10.1016/S0034-4877(12)60053-6.![]() ![]() ![]() |
|
F. Mukhamedov
, On dynamical systems and phase transitions for q+1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013)
, 49-87.
doi: 10.1007/s11040-012-9120-z.![]() ![]() ![]() |
|
F. Mukhamedov
, Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015)
, 3577-3595.
![]() ![]() |
|
F. Mukhamedov and H. Akin, Phase transitions for p-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014, 30pp.
![]() ![]() |
|
F. Mukhamedov
and O. Khakimov
, Phase transition and chaos: $P$-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals, 87 (2016)
, 190-196.
doi: 10.1016/j.chaos.2016.04.003.![]() ![]() ![]() |
|
F. Mukhamedov and O. Khakimov, On generalized self-similarity in p-adic field Fractals 24(2016), 1650041, 11pp.
doi: 10.1142/S0218348X16500419.![]() ![]() ![]() |
|
F. Mukhamedov and O. Khakimov, On Julia set and chaos in p-adic Ising model on the Cayley tree, (submitted).
![]() |
|
F. Mukhamedov
and M. Saburov
, On equation xq=a over ${\mathbb{Q}}_p$, J. Number Theor., 133 (2013)
, 55-58.
![]() ![]() |
|
F. M. Mukhamedov
and U. A. Rozikov
, On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004)
, 21-31.
![]() ![]() |
|
F. M. Mukhamedov
and U. A. Rozikov
, On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S., 15 (2004)
, 85-99.
doi: 10.1016/S0019-3577(04)90007-9.![]() ![]() ![]() |
|
W. Y. Qiu
, Y. F. Wang
, J. H. Yang
and Y. C. Yin
, On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014)
, 386-401.
doi: 10.1016/j.jmaa.2014.01.015.![]() ![]() ![]() |
|
J. Rivera-Letelier
, Dynamics of rational functions over local fields, Astérisque, 287 (2003)
, 147-230.
![]() ![]() |
|
U. A. Rozikov
and O. N. Khakimov
, Description of all translation-invariant $p$-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015)
, 177-204.
![]() ![]() |
|
M. Saburov and M. A. Kh. Ahmad, On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three Math. Phys. Anal. Geom. 18(2015), Art. 26, 33 pp.
doi: 10.1007/s11040-015-9194-5.![]() ![]() ![]() |
|
M. Saburov and M. A. Kh. Ahmad, The dynamics of the potts-bethe mapping over $\mathbb Q_p$: The case $p\equiv 2 (mod 3)$, J. Phys. : Conf. Ser. 819(2017), 012017.
![]() |
|
J. H. Silverman, The Arithmetic of Dynamical Systems New York, Springer, 2007.
doi: 10.1007/978-0-387-69904-2.![]() ![]() ![]() |
|
E. Thiran
, D. Verstegen
and J. Weters
, p-adic dynamics, J. Stat. Phys., 54 (1989)
, 893-913.
doi: 10.1007/BF01019780.![]() ![]() ![]() |
|
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-adic Analysis and Mathematical Physics World Scientific, Singapour, 1994.
doi: 10.1142/1581.![]() ![]() ![]() |
|
C. F. Woodcock
and N. P. Smart
, p-adic chaos and random number generation, Experiment Math., 7 (1998)
, 333-342.
doi: 10.1080/10586458.1998.10504379.![]() ![]() ![]() |
|
A. Yu. Khrennikov
, p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996)
, 311-330.
doi: 10.1016/0019-3577(96)83723-2.![]() ![]() ![]() |
|
A. Yu. Khrennikov, p-adic description of chaos, In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti. , World Scientific, Singapore, (1996), 177–184.
![]() |
|
A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamical Systems Kluwer, Dordreht, 2004.
doi: 10.1007/978-1-4020-2660-7.![]() ![]() ![]() |