January  2018, 38(1): 231-245. doi: 10.3934/dcds.2018011

Chaotic behavior of the P-adic Potts-Bethe mapping

1. 

Department of Mathematical Sciences, College of Science, The United Arab Emirates University, P.O. Box, 15551, Al Ain Abu Dhabi, UAE

2. 

Institute of Mathematics of Academy of Science of Uzbekistan, 29, Do'rmon Yo'li str., 100125, Tashkent, Uzbekistan

* Corresponding author: far75m@gmail.com

Received  December 2016 Revised  July 2017 Published  September 2017

Fund Project: The authors would like to thank an anonymous referee for his useful suggestions which allowed to improve the content of the paper.

In the previous investigations of the authors the renormalization group method to p-adic models on Cayley trees has been developed. This method is closely related to the investigation of p-adic dynamical systems associated with a given model. In this paper, we study chaotic behavior of the Potts-Bethe mapping. We point out that a similar kind of result is not known in the case of real numbers (with rigorous proofs).

Citation: Farrukh Mukhamedov, Otabek Khakimov. Chaotic behavior of the P-adic Potts-Bethe mapping. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 231-245. doi: 10.3934/dcds.2018011
References:
[1]

S. AlbeverioU. A. Rozikov and I. A. Sattarov, p-adic (2, 1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013), 553-566.  doi: 10.1016/j.jmaa.2012.09.009.  Google Scholar

[2]

N. S. AnanikianS. K. Dallakian and B. Hu, Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q <2, Complex Systems, 11 (1997), 213-222.   Google Scholar

[3]

V. Anashin and A. Khrennikov, Applied Algebraic Dynamics Walter de Gruyter, Berlin, New York, 2009. doi: 10.1515/9783110203011.  Google Scholar

[4]

R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001), 175-195.  doi: 10.1006/jnth.2000.2577.  Google Scholar

[5]

R. Benedetto, Hyperbolic maps in p-adic dynamics, Ergod. Th. & Dynam. Sys., 21 (2001), 1-11.  doi: 10.1017/S0143385701001043.  Google Scholar

[6]

F. A. Bosco and R. S. Jr Goulart, Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let., 4 (1987), 1103-1108.  doi: 10.1209/0295-5075/4/10/004.  Google Scholar

[7]

H. Diao and C. E. Silva, Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl., 3 (2011), 23-38.  doi: 10.1134/S2070046611010031.  Google Scholar

[8]

T. P. Eggarter, Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9 (1974), 2989-2992.  doi: 10.1103/PhysRevB.9.2989.  Google Scholar

[9]

A. H. FanL. M. LiaoY. F. Wang and D. Zhou, p-adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007), 219-224.  doi: 10.1016/j.crma.2006.12.007.  Google Scholar

[10]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math., 257 (2014), 92-135.   Google Scholar

[11]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys., 37 (2017), 3161-3182.  doi: 10.3934/dcds.2017135.  Google Scholar

[12]

G. Gyorgyi, I. Kondor, L. Sasvari and T. Tel, From Phase Transitions to Chaos World Scientific, Singapore, 1992. doi: 10.1142/1633.  Google Scholar

[13]

M. Herman and J. -C. Yoccoz, Generalizations of some theorems of small divisors to nonArchimedean fields, In: Geometric Dynamics (Rio de Janeiro 1981), Lec. Notes in Math. , Springer, Berlin, 1007 (1983), 408–447 doi: 10.1007/BFb0061427.  Google Scholar

[14]

S. Kaplan, A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008), 181-193.  doi: 10.1007/s12346-008-0010-5.  Google Scholar

[15]

M. Khamraev and F. M. Mukhamedov, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl., 315 (2006), 76-89.  doi: 10.1016/j.jmaa.2005.08.041.  Google Scholar

[16]

N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-function Berlin, Springer, 1977.  Google Scholar

[17]

J. Lubin, Nonarchimedean dynamical systems, Composito Math., 94 (1994), 321-346.   Google Scholar

[18]

S. Ludkovsky and A. Yu. Khrennikov, Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields, 9 (2003), 131-162.   Google Scholar

[19]

J. L. Monroe, Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001), 6405-6412.  doi: 10.1088/0305-4470/34/33/305.  Google Scholar

[20]

F. A. Mukhamedov, Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012), 385-406.  doi: 10.1016/S0034-4877(12)60053-6.  Google Scholar

[21]

F. Mukhamedov, On dynamical systems and phase transitions for q+1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013), 49-87.  doi: 10.1007/s11040-012-9120-z.  Google Scholar

[22]

F. Mukhamedov, Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015), 3577-3595.   Google Scholar

[23]

F. Mukhamedov and H. Akin, Phase transitions for p-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014, 30pp.  Google Scholar

[24]

F. Mukhamedov and O. Khakimov, Phase transition and chaos: $P$-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals, 87 (2016), 190-196.  doi: 10.1016/j.chaos.2016.04.003.  Google Scholar

[25]

F. Mukhamedov and O. Khakimov, On generalized self-similarity in p-adic field Fractals 24(2016), 1650041, 11pp. doi: 10.1142/S0218348X16500419.  Google Scholar

[26]

F. Mukhamedov and O. Khakimov, On Julia set and chaos in p-adic Ising model on the Cayley tree, (submitted). Google Scholar

[27]

F. Mukhamedov and M. Saburov, On equation xq=a over ${\mathbb{Q}}_p$, J. Number Theor., 133 (2013), 55-58.   Google Scholar

[28]

F. M. Mukhamedov and U. A. Rozikov, On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004), 21-31.   Google Scholar

[29]

F. M. Mukhamedov and U. A. Rozikov, On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S., 15 (2004), 85-99.  doi: 10.1016/S0019-3577(04)90007-9.  Google Scholar

[30]

W. Y. QiuY. F. WangJ. H. Yang and Y. C. Yin, On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014), 386-401.  doi: 10.1016/j.jmaa.2014.01.015.  Google Scholar

[31]

J. Rivera-Letelier, Dynamics of rational functions over local fields, Astérisque, 287 (2003), 147-230.   Google Scholar

[32]

U. A. Rozikov and O. N. Khakimov, Description of all translation-invariant $p$-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015), 177-204.   Google Scholar

[33]

M. Saburov and M. A. Kh. Ahmad, On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three Math. Phys. Anal. Geom. 18(2015), Art. 26, 33 pp. doi: 10.1007/s11040-015-9194-5.  Google Scholar

[34]

M. Saburov and M. A. Kh. Ahmad, The dynamics of the potts-bethe mapping over $\mathbb Q_p$: The case $p\equiv 2 (mod 3)$, J. Phys. : Conf. Ser. 819(2017), 012017. Google Scholar

[35]

J. H. Silverman, The Arithmetic of Dynamical Systems New York, Springer, 2007. doi: 10.1007/978-0-387-69904-2.  Google Scholar

[36]

E. ThiranD. Verstegen and J. Weters, p-adic dynamics, J. Stat. Phys., 54 (1989), 893-913.  doi: 10.1007/BF01019780.  Google Scholar

[37]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-adic Analysis and Mathematical Physics World Scientific, Singapour, 1994. doi: 10.1142/1581.  Google Scholar

[38]

C. F. Woodcock and N. P. Smart, p-adic chaos and random number generation, Experiment Math., 7 (1998), 333-342.  doi: 10.1080/10586458.1998.10504379.  Google Scholar

[39]

A. Yu. Khrennikov, p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996), 311-330.  doi: 10.1016/0019-3577(96)83723-2.  Google Scholar

[40]

A. Yu. Khrennikov, p-adic description of chaos, In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti. , World Scientific, Singapore, (1996), 177–184. Google Scholar

[41]

A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamical Systems Kluwer, Dordreht, 2004. doi: 10.1007/978-1-4020-2660-7.  Google Scholar

show all references

References:
[1]

S. AlbeverioU. A. Rozikov and I. A. Sattarov, p-adic (2, 1)-rational dynamical systems, J. Math. Anal. Appl., 398 (2013), 553-566.  doi: 10.1016/j.jmaa.2012.09.009.  Google Scholar

[2]

N. S. AnanikianS. K. Dallakian and B. Hu, Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q <2, Complex Systems, 11 (1997), 213-222.   Google Scholar

[3]

V. Anashin and A. Khrennikov, Applied Algebraic Dynamics Walter de Gruyter, Berlin, New York, 2009. doi: 10.1515/9783110203011.  Google Scholar

[4]

R. Benedetto, Reduction, dynamics, and Julia sets of rational functions, J. Number Theory, 86 (2001), 175-195.  doi: 10.1006/jnth.2000.2577.  Google Scholar

[5]

R. Benedetto, Hyperbolic maps in p-adic dynamics, Ergod. Th. & Dynam. Sys., 21 (2001), 1-11.  doi: 10.1017/S0143385701001043.  Google Scholar

[6]

F. A. Bosco and R. S. Jr Goulart, Fractal dimension of the Julia set associated with the Yang-Lee zeros of the ising model on the Cayley tree, Europhys. Let., 4 (1987), 1103-1108.  doi: 10.1209/0295-5075/4/10/004.  Google Scholar

[7]

H. Diao and C. E. Silva, Digraph representations of rational functions over the p-adic numbers, p-Adic Numbers, Ultametric Anal. Appl., 3 (2011), 23-38.  doi: 10.1134/S2070046611010031.  Google Scholar

[8]

T. P. Eggarter, Cayley trees, the Ising problem, and the thermodynamic limit, Phys. Rev. B, 9 (1974), 2989-2992.  doi: 10.1103/PhysRevB.9.2989.  Google Scholar

[9]

A. H. FanL. M. LiaoY. F. Wang and D. Zhou, p-adic repellers in Qp are subshifts of finite type, C. R. Math. Acad. Sci Paris, 344 (2007), 219-224.  doi: 10.1016/j.crma.2006.12.007.  Google Scholar

[10]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, On minimal deecomposition of p-adic homographic dynamical systems, Adv. Math., 257 (2014), 92-135.   Google Scholar

[11]

A. H. FanS. L. FanL. M. Liao and Y. F. Wang, Minimality of p-adic rational maps with good reduction, Discrete Cont. Dyn. Sys., 37 (2017), 3161-3182.  doi: 10.3934/dcds.2017135.  Google Scholar

[12]

G. Gyorgyi, I. Kondor, L. Sasvari and T. Tel, From Phase Transitions to Chaos World Scientific, Singapore, 1992. doi: 10.1142/1633.  Google Scholar

[13]

M. Herman and J. -C. Yoccoz, Generalizations of some theorems of small divisors to nonArchimedean fields, In: Geometric Dynamics (Rio de Janeiro 1981), Lec. Notes in Math. , Springer, Berlin, 1007 (1983), 408–447 doi: 10.1007/BFb0061427.  Google Scholar

[14]

S. Kaplan, A survey of symbolic dynamics and celestial mechanics, Qualitative Theor. Dyn. Sys., 7 (2008), 181-193.  doi: 10.1007/s12346-008-0010-5.  Google Scholar

[15]

M. Khamraev and F. M. Mukhamedov, On a class of rational p-adic dynamical systems, J. Math. Anal. Appl., 315 (2006), 76-89.  doi: 10.1016/j.jmaa.2005.08.041.  Google Scholar

[16]

N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-function Berlin, Springer, 1977.  Google Scholar

[17]

J. Lubin, Nonarchimedean dynamical systems, Composito Math., 94 (1994), 321-346.   Google Scholar

[18]

S. Ludkovsky and A. Yu. Khrennikov, Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields, Markov Process. Related Fields, 9 (2003), 131-162.   Google Scholar

[19]

J. L. Monroe, Julia sets associated with the Potts model on the Bethe lattice and other recursively solved systems, J. Phys. A: Math. Gen., 34 (2001), 6405-6412.  doi: 10.1088/0305-4470/34/33/305.  Google Scholar

[20]

F. A. Mukhamedov, Dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two, Rep. Math. Phys., 70 (2012), 385-406.  doi: 10.1016/S0034-4877(12)60053-6.  Google Scholar

[21]

F. Mukhamedov, On dynamical systems and phase transitions for q+1-state p-adic Potts model on the Cayley tree, Math. Phys. Anal. Geom., 53 (2013), 49-87.  doi: 10.1007/s11040-012-9120-z.  Google Scholar

[22]

F. Mukhamedov, Renormalization method in p-adic λ-model on the Cayley tree, Int. J. Theor. Phys., 54 (2015), 3577-3595.   Google Scholar

[23]

F. Mukhamedov and H. Akin, Phase transitions for p-adic Potts model on the Cayley tree of order three, J. Stat. Mech. (2013), P07014, 30pp.  Google Scholar

[24]

F. Mukhamedov and O. Khakimov, Phase transition and chaos: $P$-adic Potts model on a Cayley tree, Chaos, Solitons & Fractals, 87 (2016), 190-196.  doi: 10.1016/j.chaos.2016.04.003.  Google Scholar

[25]

F. Mukhamedov and O. Khakimov, On generalized self-similarity in p-adic field Fractals 24(2016), 1650041, 11pp. doi: 10.1142/S0218348X16500419.  Google Scholar

[26]

F. Mukhamedov and O. Khakimov, On Julia set and chaos in p-adic Ising model on the Cayley tree, (submitted). Google Scholar

[27]

F. Mukhamedov and M. Saburov, On equation xq=a over ${\mathbb{Q}}_p$, J. Number Theor., 133 (2013), 55-58.   Google Scholar

[28]

F. M. Mukhamedov and U. A. Rozikov, On rational p-adic dynamical systems, Methods of Funct. Anal. and Topology, 10 (2004), 21-31.   Google Scholar

[29]

F. M. Mukhamedov and U. A. Rozikov, On Gibbs measures of p-adic Potts model on the Cayley tree, Indag. Math. N.S., 15 (2004), 85-99.  doi: 10.1016/S0019-3577(04)90007-9.  Google Scholar

[30]

W. Y. QiuY. F. WangJ. H. Yang and Y. C. Yin, On metric properties of limiting sets of contractive analytic non-Archimedean dynamical systems, J. Math. Anal. App., 414 (2014), 386-401.  doi: 10.1016/j.jmaa.2014.01.015.  Google Scholar

[31]

J. Rivera-Letelier, Dynamics of rational functions over local fields, Astérisque, 287 (2003), 147-230.   Google Scholar

[32]

U. A. Rozikov and O. N. Khakimov, Description of all translation-invariant $p$-dic Gibbs measures for the Potts model on a Cayley tree, Markov Proces. Rel. Fields, 21 (2015), 177-204.   Google Scholar

[33]

M. Saburov and M. A. Kh. Ahmad, On descriptions of all translation invariant p-adic Gibbs measures for the Potts model on the Cayley tree of order three Math. Phys. Anal. Geom. 18(2015), Art. 26, 33 pp. doi: 10.1007/s11040-015-9194-5.  Google Scholar

[34]

M. Saburov and M. A. Kh. Ahmad, The dynamics of the potts-bethe mapping over $\mathbb Q_p$: The case $p\equiv 2 (mod 3)$, J. Phys. : Conf. Ser. 819(2017), 012017. Google Scholar

[35]

J. H. Silverman, The Arithmetic of Dynamical Systems New York, Springer, 2007. doi: 10.1007/978-0-387-69904-2.  Google Scholar

[36]

E. ThiranD. Verstegen and J. Weters, p-adic dynamics, J. Stat. Phys., 54 (1989), 893-913.  doi: 10.1007/BF01019780.  Google Scholar

[37]

V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-adic Analysis and Mathematical Physics World Scientific, Singapour, 1994. doi: 10.1142/1581.  Google Scholar

[38]

C. F. Woodcock and N. P. Smart, p-adic chaos and random number generation, Experiment Math., 7 (1998), 333-342.  doi: 10.1080/10586458.1998.10504379.  Google Scholar

[39]

A. Yu. Khrennikov, p-adic valued probability measures, Indag. Mathem. N.S., 7 (1996), 311-330.  doi: 10.1016/0019-3577(96)83723-2.  Google Scholar

[40]

A. Yu. Khrennikov, p-adic description of chaos, In: Nonlinear Physics: Theory and Experiment. Editors E. Alfinito, M. Boti. , World Scientific, Singapore, (1996), 177–184. Google Scholar

[41]

A. Yu. Khrennikov and M. Nilsson, P-Adic Deterministic and Random Dynamical Systems Kluwer, Dordreht, 2004. doi: 10.1007/978-1-4020-2660-7.  Google Scholar

[1]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[2]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[3]

Takao Komatsu, Bijan Kumar Patel, Claudio Pita-Ruiz. Several formulas for Bernoulli numbers and polynomials. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021006

[4]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[5]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449

[6]

Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021003

[7]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[8]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[9]

Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks & Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004

[10]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[11]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[12]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[13]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[14]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[15]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[16]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021058

[19]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[20]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (69)
  • HTML views (72)
  • Cited by (6)

Other articles
by authors

[Back to Top]