January  2018, 38(1): 247-261. doi: 10.3934/dcds.2018012

On C1, β density of metrics without invariant graphs

1. 

Departamento de Geometria e Representação Gráfica, IME-UERJ, R. São Francisco Xavier, 524, Rio de Janeiro, 20550-900, Brazil

2. 

Departamento de Matemática PUC-Rio, Rua Marquês de São Vicente 225, Rio de Janeiro 22543-900, Brazil, and Université d'Aix Marseille, France

* Corresponding author: Rafael O. Ruggiero

Received  July 2016 Revised  July 2017 Published  September 2017

Fund Project: Partially supported by FAPERJ, CNPq, CAPES and CNRS, unit´e FR2291 FRUMAM.

We show that given any $C^{\infty}$ Riemannian structure $(T^{2},g)$ in the two torus, $\epsilon >0$ and $\beta \in (0,\frac{1}{3})$, there exists a $C^{\infty}$ Riemannian metric $\bar{g}$ with no continuous Lagrangian invariant graphs that is $\epsilon$-$C^{1,\beta}$ close to $g$. The main idea of the proof is inspired in the work of V. Bangert who introduced caps from smoothed cone type $C^{1}$ small perturbations of metrics with non-positive curvature to get conjugate points. Our new contribution to the subject is to show that positive curvature cone type small perturbations are ``less singular" than non-positive curvature cone type perturbations. Positive curvature geometry allows us to get better estimates for the variation of the $C^{1}$ norm of the singular cone in a neighborhood of its vertex.

Citation: Rodrigo P. Pacheco, Rafael O. Ruggiero. On C1, β density of metrics without invariant graphs. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 247-261. doi: 10.3934/dcds.2018012
References:
[1]

V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-56.   Google Scholar

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de lánneau Vol. 1, Astérisque, (1983), 103-104.   Google Scholar

[3]

M. R. Herman, Non existence of Lagrangian graphs, available online in Archive Michel Herman: http://www.college-de-france.fr, (1990), 1–5. Google Scholar

[4]

R. S. Mackay, A criterion for non-existence of invariant tori for Hamiltonian systems, Physica D: Nonlinear Phenomena, 36 (1989), 64-82.  doi: 10.1016/0167-2789(89)90248-0.  Google Scholar

[5]

J. N. Mather, Destruction of invariant circles, Ergodic Theory Dynam. Systems, 8 (1988), 199-214.  doi: 10.1017/S0143385700009421.  Google Scholar

[6]

M. Morse, The Calculus of Variations in the Large American Mathematical Society, Providence, RI, 1996. doi: 10.1090/coll/018.  Google Scholar

[7]

G. Paternain, Geodesic Flows Progress in Mathematics, 180, Birkhäuser Boston, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[8]

R. O. Ruggiero, On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.  doi: 10.1007/BF02571508.  Google Scholar

[9]

R. O. Ruggiero, The set of smooth metrics in the torus without continuous invariant graphs is open and dense in the C1 topology, Bulletin of the Brazilian Mathematical Society, 35 (2004), 377-385.  doi: 10.1007/s00574-004-0020-0.  Google Scholar

[10]

R. O. Ruggiero, On the density of mechanical Lagrangians in T2 without continuous invariant graphs in all supercritical energy levels, Discrete and Continuous Dynamical Systems. Series B, 10 (2008), 661-679.  doi: 10.3934/dcdsb.2008.10.661.  Google Scholar

[11]

F. Takens, A C1 counterexample to Moser's twist theorem, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., 33 (1971), 379-386.   Google Scholar

show all references

References:
[1]

V. Bangert, Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1 (1988), 1-56.   Google Scholar

[2]

M. R. Herman, Sur les courbes invariantes par les difféomorphismes de lánneau Vol. 1, Astérisque, (1983), 103-104.   Google Scholar

[3]

M. R. Herman, Non existence of Lagrangian graphs, available online in Archive Michel Herman: http://www.college-de-france.fr, (1990), 1–5. Google Scholar

[4]

R. S. Mackay, A criterion for non-existence of invariant tori for Hamiltonian systems, Physica D: Nonlinear Phenomena, 36 (1989), 64-82.  doi: 10.1016/0167-2789(89)90248-0.  Google Scholar

[5]

J. N. Mather, Destruction of invariant circles, Ergodic Theory Dynam. Systems, 8 (1988), 199-214.  doi: 10.1017/S0143385700009421.  Google Scholar

[6]

M. Morse, The Calculus of Variations in the Large American Mathematical Society, Providence, RI, 1996. doi: 10.1090/coll/018.  Google Scholar

[7]

G. Paternain, Geodesic Flows Progress in Mathematics, 180, Birkhäuser Boston, 1999. doi: 10.1007/978-1-4612-1600-1.  Google Scholar

[8]

R. O. Ruggiero, On the creation of conjugate points, Mathematische Zeitschrift, 208 (1991), 41-55.  doi: 10.1007/BF02571508.  Google Scholar

[9]

R. O. Ruggiero, The set of smooth metrics in the torus without continuous invariant graphs is open and dense in the C1 topology, Bulletin of the Brazilian Mathematical Society, 35 (2004), 377-385.  doi: 10.1007/s00574-004-0020-0.  Google Scholar

[10]

R. O. Ruggiero, On the density of mechanical Lagrangians in T2 without continuous invariant graphs in all supercritical energy levels, Discrete and Continuous Dynamical Systems. Series B, 10 (2008), 661-679.  doi: 10.3934/dcdsb.2008.10.661.  Google Scholar

[11]

F. Takens, A C1 counterexample to Moser's twist theorem, Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math., 33 (1971), 379-386.   Google Scholar

Figure 1.  In the right, the curve connecting $x_1$ and $x_2$ is a minimizing geodesic of length $2\rho$ that not intersect a neighborhood of the singularity
[1]

Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021057

[2]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[3]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[4]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[5]

Patrick Henning, Anders M. N. Niklasson. Shadow Lagrangian dynamics for superfluidity. Kinetic & Related Models, 2021, 14 (2) : 303-321. doi: 10.3934/krm.2021006

[6]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[7]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[8]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[9]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[10]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062

[11]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[12]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[13]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[14]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031

[15]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[16]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[17]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[18]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[19]

Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045

[20]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (73)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]