January  2018, 38(1): 263-292. doi: 10.3934/dcds.2018013

Absolutely continuous spectrum for parabolic flows/maps

Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

Received  November 2016 Revised  August 2017 Published  September 2017

We provide an abstract framework for the study of certain spectral properties of parabolic systems; specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general conditions to derive results for spectral properties of time-changes of unipotent flows on homogeneous spaces of semisimple groups regarding absolutely continuous spectrum as well as maximal spectral type; the time-changes of the horocycle flow are special cases of this general category of flows. In addition we use the general conditions to derive spectral results for twisted horocycle flows and to rederive certain spectral results for skew products over translations and Furstenberg transformations.

Citation: Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013
References:
[1]

W. O Amrein, Hilbert Space Methods in Quantum Mechanics, Fundamental Sciences, EPFL Press Lausanne, 2009.  Google Scholar

[2]

W. O. Amrein, A. Boutet de Monvel and V. Georgescu, $C_0$-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progress in Math Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-7762-6.  Google Scholar

[3]

H. Anzai, Ergodic skew product transformations on the torus, Osaka Journal of Mathematics, 3 (1951), 83-99.   Google Scholar

[4]

J. Brown, Ergodic Theory and Topological Dynamics Academic Press, 1976.  Google Scholar

[5]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows, Journal of Modern Dynamics, 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.  Google Scholar

[6]

H. Furstenberg, Strict Ergodicity and transformation of the torus, American Journal of Mathematics, 83 (1961), 573-601.  doi: 10.2307/2372899.  Google Scholar

[7]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. , Yale Univ. , New Haven, Conn. , 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Springer, Berlin, 318 (1972), 95–115.  Google Scholar

[8]

H. Helson, Cocyles on the circle, Journal of Operator Theory, 16 (1986), 189-199.   Google Scholar

[9]

A. Iwanik, Anzai skew products with Lebesgue with Lebesgue component of infinite multiplicity, Bulletin of the London Mathematical Society, 29 (1997), 195-199.  doi: 10.1112/S0024609396002147.  Google Scholar

[10]

A. Iwanik, Spectral properties of skew-product diffeomorphisms of tori, Colloquium Mathematicum, 72 (1997), 223-235.   Google Scholar

[11]

A. IwanikM. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel Journal of Mathematics, 83 (1993), 73-95.  doi: 10.1007/BF02764637.  Google Scholar

[12]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29 (1974), 101-108.   Google Scholar

[13]

M. Lemańczyk, Spectral theory of dynamical systems, Encyclopedia of Complexity and Systems Science, (2009), 8554-8575.   Google Scholar

[14]

B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Annals of Mathematics, Second Series 105 (1977), 81–105. doi: 10.2307/1971026.  Google Scholar

[15]

C. C. Moore, Ergodicity of flows on homogeneous spaces, American Journal of Mathematics, 88 (1966), 154-178.  doi: 10.2307/2373052.  Google Scholar

[16]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Communications in Mathematical Phsyics, 78 (1980/81), 391-408.   Google Scholar

[17]

S. Richard and R. Tiedra de Aldecoa, Commutator criteria for strong mixing Ⅱ, preprint, arXiv: 1510.00201 Google Scholar

[18]

R. Tiedra de Aldecoa, Spectral analysis of time-changes of the horocycle flow, Journal of Modern Dynamics, 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.  Google Scholar

[19]

R. Tiedra de Aldecoa, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory and Dynamical Systems, 35 (2015), 944-967.  doi: 10.1017/etds.2013.76.  Google Scholar

[20]

R. Tiedra de Aldecoa, Commutator criteria for strong mixing, Ergodic Theory and Dynamical Systems, 37 (2017), 308-323.  doi: 10.1017/etds.2015.47.  Google Scholar

show all references

References:
[1]

W. O Amrein, Hilbert Space Methods in Quantum Mechanics, Fundamental Sciences, EPFL Press Lausanne, 2009.  Google Scholar

[2]

W. O. Amrein, A. Boutet de Monvel and V. Georgescu, $C_0$-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progress in Math Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-7762-6.  Google Scholar

[3]

H. Anzai, Ergodic skew product transformations on the torus, Osaka Journal of Mathematics, 3 (1951), 83-99.   Google Scholar

[4]

J. Brown, Ergodic Theory and Topological Dynamics Academic Press, 1976.  Google Scholar

[5]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows, Journal of Modern Dynamics, 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.  Google Scholar

[6]

H. Furstenberg, Strict Ergodicity and transformation of the torus, American Journal of Mathematics, 83 (1961), 573-601.  doi: 10.2307/2372899.  Google Scholar

[7]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. , Yale Univ. , New Haven, Conn. , 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Springer, Berlin, 318 (1972), 95–115.  Google Scholar

[8]

H. Helson, Cocyles on the circle, Journal of Operator Theory, 16 (1986), 189-199.   Google Scholar

[9]

A. Iwanik, Anzai skew products with Lebesgue with Lebesgue component of infinite multiplicity, Bulletin of the London Mathematical Society, 29 (1997), 195-199.  doi: 10.1112/S0024609396002147.  Google Scholar

[10]

A. Iwanik, Spectral properties of skew-product diffeomorphisms of tori, Colloquium Mathematicum, 72 (1997), 223-235.   Google Scholar

[11]

A. IwanikM. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel Journal of Mathematics, 83 (1993), 73-95.  doi: 10.1007/BF02764637.  Google Scholar

[12]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29 (1974), 101-108.   Google Scholar

[13]

M. Lemańczyk, Spectral theory of dynamical systems, Encyclopedia of Complexity and Systems Science, (2009), 8554-8575.   Google Scholar

[14]

B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Annals of Mathematics, Second Series 105 (1977), 81–105. doi: 10.2307/1971026.  Google Scholar

[15]

C. C. Moore, Ergodicity of flows on homogeneous spaces, American Journal of Mathematics, 88 (1966), 154-178.  doi: 10.2307/2373052.  Google Scholar

[16]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Communications in Mathematical Phsyics, 78 (1980/81), 391-408.   Google Scholar

[17]

S. Richard and R. Tiedra de Aldecoa, Commutator criteria for strong mixing Ⅱ, preprint, arXiv: 1510.00201 Google Scholar

[18]

R. Tiedra de Aldecoa, Spectral analysis of time-changes of the horocycle flow, Journal of Modern Dynamics, 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.  Google Scholar

[19]

R. Tiedra de Aldecoa, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory and Dynamical Systems, 35 (2015), 944-967.  doi: 10.1017/etds.2013.76.  Google Scholar

[20]

R. Tiedra de Aldecoa, Commutator criteria for strong mixing, Ergodic Theory and Dynamical Systems, 37 (2017), 308-323.  doi: 10.1017/etds.2015.47.  Google Scholar

[1]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[2]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[3]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[4]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[5]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[8]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[9]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[10]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[14]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[15]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[18]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (72)
  • HTML views (64)
  • Cited by (5)

Other articles
by authors

[Back to Top]