January  2018, 38(1): 263-292. doi: 10.3934/dcds.2018013

Absolutely continuous spectrum for parabolic flows/maps

Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy

Received  November 2016 Revised  August 2017 Published  September 2017

We provide an abstract framework for the study of certain spectral properties of parabolic systems; specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general conditions to derive results for spectral properties of time-changes of unipotent flows on homogeneous spaces of semisimple groups regarding absolutely continuous spectrum as well as maximal spectral type; the time-changes of the horocycle flow are special cases of this general category of flows. In addition we use the general conditions to derive spectral results for twisted horocycle flows and to rederive certain spectral results for skew products over translations and Furstenberg transformations.

Citation: Lucia D. Simonelli. Absolutely continuous spectrum for parabolic flows/maps. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 263-292. doi: 10.3934/dcds.2018013
References:
[1]

W. O Amrein, Hilbert Space Methods in Quantum Mechanics, Fundamental Sciences, EPFL Press Lausanne, 2009.

[2]

W. O. Amrein, A. Boutet de Monvel and V. Georgescu, $C_0$-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progress in Math Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-7762-6.

[3]

H. Anzai, Ergodic skew product transformations on the torus, Osaka Journal of Mathematics, 3 (1951), 83-99. 

[4]

J. Brown, Ergodic Theory and Topological Dynamics Academic Press, 1976.

[5]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows, Journal of Modern Dynamics, 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.

[6]

H. Furstenberg, Strict Ergodicity and transformation of the torus, American Journal of Mathematics, 83 (1961), 573-601.  doi: 10.2307/2372899.

[7]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. , Yale Univ. , New Haven, Conn. , 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Springer, Berlin, 318 (1972), 95–115.

[8]

H. Helson, Cocyles on the circle, Journal of Operator Theory, 16 (1986), 189-199. 

[9]

A. Iwanik, Anzai skew products with Lebesgue with Lebesgue component of infinite multiplicity, Bulletin of the London Mathematical Society, 29 (1997), 195-199.  doi: 10.1112/S0024609396002147.

[10]

A. Iwanik, Spectral properties of skew-product diffeomorphisms of tori, Colloquium Mathematicum, 72 (1997), 223-235. 

[11]

A. IwanikM. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel Journal of Mathematics, 83 (1993), 73-95.  doi: 10.1007/BF02764637.

[12]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29 (1974), 101-108. 

[13]

M. Lemańczyk, Spectral theory of dynamical systems, Encyclopedia of Complexity and Systems Science, (2009), 8554-8575. 

[14]

B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Annals of Mathematics, Second Series 105 (1977), 81–105. doi: 10.2307/1971026.

[15]

C. C. Moore, Ergodicity of flows on homogeneous spaces, American Journal of Mathematics, 88 (1966), 154-178.  doi: 10.2307/2373052.

[16]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Communications in Mathematical Phsyics, 78 (1980/81), 391-408. 

[17]

S. Richard and R. Tiedra de Aldecoa, Commutator criteria for strong mixing Ⅱ, preprint, arXiv: 1510.00201

[18]

R. Tiedra de Aldecoa, Spectral analysis of time-changes of the horocycle flow, Journal of Modern Dynamics, 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.

[19]

R. Tiedra de Aldecoa, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory and Dynamical Systems, 35 (2015), 944-967.  doi: 10.1017/etds.2013.76.

[20]

R. Tiedra de Aldecoa, Commutator criteria for strong mixing, Ergodic Theory and Dynamical Systems, 37 (2017), 308-323.  doi: 10.1017/etds.2015.47.

show all references

References:
[1]

W. O Amrein, Hilbert Space Methods in Quantum Mechanics, Fundamental Sciences, EPFL Press Lausanne, 2009.

[2]

W. O. Amrein, A. Boutet de Monvel and V. Georgescu, $C_0$-groups, Commutator Methods and Spectral Theory of N-body Hamiltonians, Progress in Math Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-7762-6.

[3]

H. Anzai, Ergodic skew product transformations on the torus, Osaka Journal of Mathematics, 3 (1951), 83-99. 

[4]

J. Brown, Ergodic Theory and Topological Dynamics Academic Press, 1976.

[5]

G. Forni and C. Ulcigrai, Time-changes of horocycle flows, Journal of Modern Dynamics, 6 (2012), 251-273.  doi: 10.3934/jmd.2012.6.251.

[6]

H. Furstenberg, Strict Ergodicity and transformation of the torus, American Journal of Mathematics, 83 (1961), 573-601.  doi: 10.2307/2372899.

[7]

H. Furstenberg, The unique ergodicity of the horocycle flow, Recent advances in topological dynamics (Proc. Conf. , Yale Univ. , New Haven, Conn. , 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics, Springer, Berlin, 318 (1972), 95–115.

[8]

H. Helson, Cocyles on the circle, Journal of Operator Theory, 16 (1986), 189-199. 

[9]

A. Iwanik, Anzai skew products with Lebesgue with Lebesgue component of infinite multiplicity, Bulletin of the London Mathematical Society, 29 (1997), 195-199.  doi: 10.1112/S0024609396002147.

[10]

A. Iwanik, Spectral properties of skew-product diffeomorphisms of tori, Colloquium Mathematicum, 72 (1997), 223-235. 

[11]

A. IwanikM. Lemańczyk and D. Rudolph, Absolutely continuous cocycles over irrational rotations, Israel Journal of Mathematics, 83 (1993), 73-95.  doi: 10.1007/BF02764637.

[12]

A. G. Kushnirenko, Spectral properties of certain dynamical systems with polynomial dispersal, Vestnik Moskov. Univ. Ser. I Mat. Meh., 29 (1974), 101-108. 

[13]

M. Lemańczyk, Spectral theory of dynamical systems, Encyclopedia of Complexity and Systems Science, (2009), 8554-8575. 

[14]

B. Marcus, Ergodic properties of horocycle flows for surfaces of negative curvature, Annals of Mathematics, Second Series 105 (1977), 81–105. doi: 10.2307/1971026.

[15]

C. C. Moore, Ergodicity of flows on homogeneous spaces, American Journal of Mathematics, 88 (1966), 154-178.  doi: 10.2307/2373052.

[16]

E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Communications in Mathematical Phsyics, 78 (1980/81), 391-408. 

[17]

S. Richard and R. Tiedra de Aldecoa, Commutator criteria for strong mixing Ⅱ, preprint, arXiv: 1510.00201

[18]

R. Tiedra de Aldecoa, Spectral analysis of time-changes of the horocycle flow, Journal of Modern Dynamics, 6 (2012), 275-285.  doi: 10.3934/jmd.2012.6.275.

[19]

R. Tiedra de Aldecoa, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, Ergodic Theory and Dynamical Systems, 35 (2015), 944-967.  doi: 10.1017/etds.2013.76.

[20]

R. Tiedra de Aldecoa, Commutator criteria for strong mixing, Ergodic Theory and Dynamical Systems, 37 (2017), 308-323.  doi: 10.1017/etds.2015.47.

[1]

Kim Dang Phung. Carleman commutator approach in logarithmic convexity for parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 899-933. doi: 10.3934/mcrf.2018040

[2]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[3]

Zhen-Zhen Tao, Bing Sun. Space-time spectral methods for a fourth-order parabolic optimal control problem in three control constraint cases. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022080

[4]

Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079

[5]

Zoltán Horváth, Yunfei Song, Tamás Terlaky. Steplength thresholds for invariance preserving of discretization methods of dynamical systems on a polyhedron. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2997-3013. doi: 10.3934/dcds.2015.35.2997

[6]

Kazuyuki Yagasaki. Optimal control of the SIR epidemic model based on dynamical systems theory. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2501-2513. doi: 10.3934/dcdsb.2021144

[7]

Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188

[8]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[9]

Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249

[10]

Barry Simon. Equilibrium measures and capacities in spectral theory. Inverse Problems and Imaging, 2007, 1 (4) : 713-772. doi: 10.3934/ipi.2007.1.713

[11]

Raffaele D'Ambrosio, Stefano Di Giovacchino. Numerical preservation issues in stochastic dynamical systems by $ \vartheta $-methods. Journal of Computational Dynamics, 2022, 9 (2) : 123-131. doi: 10.3934/jcd.2021023

[12]

Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008

[13]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: Numerical evaluation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022047

[14]

Dung Le. Global existence and regularity results for strongly coupled nonregular parabolic systems via iterative methods. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 877-893. doi: 10.3934/dcdsb.2017044

[15]

Takeshi Saito, Kazuyuki Yagasaki. Chebyshev spectral methods for computing center manifolds. Journal of Computational Dynamics, 2021, 8 (2) : 165-181. doi: 10.3934/jcd.2021008

[16]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure and Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[17]

Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703

[18]

Robert Carlson. Spectral theory for nonconservative transmission line networks. Networks and Heterogeneous Media, 2011, 6 (2) : 257-277. doi: 10.3934/nhm.2011.6.257

[19]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[20]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (172)
  • HTML views (70)
  • Cited by (6)

Other articles
by authors

[Back to Top]