January  2018, 38(1): 329-341. doi: 10.3934/dcds.2018016

Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

* Corresponding author: ysjmath@163.com

Received  May 2017 Revised  July 2017 Published  September 2017

In this paper, we study symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Lie symmetry analysis and similarity reductions are performed, some invariant solutions are also discussed. Then prove that the strong solutions of the system maintain corresponding properties at infinity within its lifespan provided the initial data decay exponentially and algebraically, respectively. Furthermore, we show that the system exhibits unique continuation if the initial momentum $m_0$ and $n_0$ are positive.

Citation: Shaojie Yang, Tianzhou Xu. Symmetry analysis, persistence properties and unique continuation for the cross-coupled Camassa-Holm system. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 329-341. doi: 10.3934/dcds.2018016
References:
[1]

G. W. Bluman, Symmetry and Integration Methods for Differential Equations Springer, New York, 2002.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Appl. Anal., 5 (2007), 1-27.   Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci, 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[8]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[9]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.  doi: 10.1093/imamat/hxs033.  Google Scholar

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math, 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[11]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Differential Equations, 12 (2002), 415-422.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[12]

A. Constantin and W. Strauss, Stability of peakons, Comm. Pure. Appl. Math, 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[13]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[14]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, Journal of Mathematical Physics. 46(2005)023506. J. Math. Phys. 46 (2005), 023506. Google Scholar

[15]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational. Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[16]

C. J. Cotter, D. D. Holm, R. I. Ivanov and J. R. Percival, Waltzing peakons and compacton pairs in a cross-coupled Camassa-Holm equation J. Phys. A: Math. Theor. 44 (2011), 265205. doi: 10.1088/1751-8113/44/26/265205.  Google Scholar

[17]

H. Dai, Model equations for nolinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.  doi: 10.1007/BF01170373.  Google Scholar

[18]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[19]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[20]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

Y. FuY. Liu and C. Qu, On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations, J. Funct. Anal., 262 (2012), 3125-3158.  doi: 10.1016/j.jfa.2012.01.009.  Google Scholar

[22]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154.  doi: 10.1016/j.jfa.2010.11.015.  Google Scholar

[23]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.   Google Scholar

[25]

D. HenryD. Holm and R. Ivanov, On the persistence properties of the cross-coupled Camassa-Holm system, J. Geom. Symmetry Phys., 32 (2013), 1-13.   Google Scholar

[26]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755-759.  doi: 10.1016/j.jmaa.2005.03.001.  Google Scholar

[29]

D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 145-150.   Google Scholar

[30]

D. Henry, Persistence properties for the Degasperis-Procesi equation, J. Hyperbolic Differ. Equ., 5 (2008), 99-111.  doi: 10.1142/S0219891608001404.  Google Scholar

[31]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[32]

A. HimonasC. Kenig and G. Misiolek, Non-uniform dependence for the periodic Camassa-Holm equation, Comm. Partial Differential Equations, 35 (2010), 1145-1162.  doi: 10.1080/03605300903436746.  Google Scholar

[33]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[34]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.  doi: 10.1080/03605300601088674.  Google Scholar

[35]

J. Li and Z. Yin, Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces, J. Differential Equations, 261 (2016), 6125-6143.  doi: 10.1016/j.jde.2016.08.031.  Google Scholar

[36]

X. Liu, On the solutions of the cross-coupled Camassa-Holm system, Nonlinear Analysis: Real World Applications, 23 (2015), 183-195.  doi: 10.1016/j.nonrwa.2014.12.004.  Google Scholar

[37]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discrete Contin. Dyn. Syst., 34 (2014), 3095-3107.  doi: 10.3934/dcds.2014.34.3095.  Google Scholar

[38]

O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[39]

L. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-Holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614.  doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[40]

P. Olver, Applications of Lie Groups to Differential Equations Springer, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[41]

L. V. Ovsiannikov, Group Analysis of Differential Equations Academic Press, 1982.  Google Scholar

[42]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[43]

Y. Zhu and F. Fu, Persistence properties of the solutions to a generalized two-component Camassa-Holm shallow water system, Nonlinear Analysis: Theory, Methods and Applications, 128 (2015), 77-85.  doi: 10.1016/j.na.2015.07.027.  Google Scholar

show all references

References:
[1]

G. W. Bluman, Symmetry and Integration Methods for Differential Equations Springer, New York, 2002.  Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Appl. Anal., 5 (2007), 1-27.   Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci, 457 (2001), 953-970.  doi: 10.1098/rspa.2000.0701.  Google Scholar

[6]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.  doi: 10.1007/s00222-006-0002-5.  Google Scholar

[7]

A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.  doi: 10.1090/S0273-0979-07-01159-7.  Google Scholar

[8]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.  doi: 10.4007/annals.2011.173.1.12.  Google Scholar

[9]

A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307.  doi: 10.1093/imamat/hxs033.  Google Scholar

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math, 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[11]

A. Constantin and W. Strauss, Stability of the Camassa-Holm solitons, J. Differential Equations, 12 (2002), 415-422.  doi: 10.1007/s00332-002-0517-x.  Google Scholar

[12]

A. Constantin and W. Strauss, Stability of peakons, Comm. Pure. Appl. Math, 53 (2000), 603-610.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[13]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.  doi: 10.1016/j.physleta.2008.10.050.  Google Scholar

[14]

A. Constantin, Finite propagation speed for the Camassa-Holm equation, Journal of Mathematical Physics. 46(2005)023506. J. Math. Phys. 46 (2005), 023506. Google Scholar

[15]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational. Mech. Anal., 192 (2009), 165-186.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[16]

C. J. Cotter, D. D. Holm, R. I. Ivanov and J. R. Percival, Waltzing peakons and compacton pairs in a cross-coupled Camassa-Holm equation J. Phys. A: Math. Theor. 44 (2011), 265205. doi: 10.1088/1751-8113/44/26/265205.  Google Scholar

[17]

H. Dai, Model equations for nolinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.  doi: 10.1007/BF01170373.  Google Scholar

[18]

R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.   Google Scholar

[19]

R. Danchin, A note on well-posedness for Camassa-Holm equation, J. Differential Equations, 192 (2003), 429-444.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[20]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäklund transformation and hereditary symmetries, Physica D, 4 (1981), 47-66.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

Y. FuY. Liu and C. Qu, On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations, J. Funct. Anal., 262 (2012), 3125-3158.  doi: 10.1016/j.jfa.2012.01.009.  Google Scholar

[22]

C. Guan and Z. Yin, Global weak solutions for a two-component Camassa-Holm shallow water system, J. Funct. Anal., 260 (2011), 1132-1154.  doi: 10.1016/j.jfa.2010.11.015.  Google Scholar

[23]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differential Equations, 248 (2010), 2003-2014.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[24]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system, J. Funct. Anal., 258 (2010), 4251-4278.   Google Scholar

[25]

D. HenryD. Holm and R. Ivanov, On the persistence properties of the cross-coupled Camassa-Holm system, J. Geom. Symmetry Phys., 32 (2013), 1-13.   Google Scholar

[26]

D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597-606.  doi: 10.3934/dcdsb.2009.12.597.  Google Scholar

[27]

D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.  doi: 10.2991/jnmp.2005.12.3.3.  Google Scholar

[28]

D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755-759.  doi: 10.1016/j.jmaa.2005.03.001.  Google Scholar

[29]

D. Henry, Compactly supported solutions of a family of nonlinear partial differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 145-150.   Google Scholar

[30]

D. Henry, Persistence properties for the Degasperis-Procesi equation, J. Hyperbolic Differ. Equ., 5 (2008), 99-111.  doi: 10.1142/S0219891608001404.  Google Scholar

[31]

D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonlinear Anal., 70 (2009), 1565-1573.  doi: 10.1016/j.na.2008.02.104.  Google Scholar

[32]

A. HimonasC. Kenig and G. Misiolek, Non-uniform dependence for the periodic Camassa-Holm equation, Comm. Partial Differential Equations, 35 (2010), 1145-1162.  doi: 10.1080/03605300903436746.  Google Scholar

[33]

A. HimonasG. MisiolekG. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522.  doi: 10.1007/s00220-006-0172-4.  Google Scholar

[34]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equations-a Lagrangian point of view, Comm. Partial Differential Equations, 32 (2007), 1511-1549.  doi: 10.1080/03605300601088674.  Google Scholar

[35]

J. Li and Z. Yin, Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces, J. Differential Equations, 261 (2016), 6125-6143.  doi: 10.1016/j.jde.2016.08.031.  Google Scholar

[36]

X. Liu, On the solutions of the cross-coupled Camassa-Holm system, Nonlinear Analysis: Real World Applications, 23 (2015), 183-195.  doi: 10.1016/j.nonrwa.2014.12.004.  Google Scholar

[37]

T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discrete Contin. Dyn. Syst., 34 (2014), 3095-3107.  doi: 10.3934/dcds.2014.34.3095.  Google Scholar

[38]

O. G. Mustafa, A note on the Degasperis-Procesi equation, J. Nonlinear Math. Phys., 12 (2005), 10-14.  doi: 10.2991/jnmp.2005.12.1.2.  Google Scholar

[39]

L. Ni and Y. Zhou, A new asymptotic behavior of solutions to the Camassa-Holm equation, Proc. Amer. Math. Soc., 140 (2012), 607-614.  doi: 10.1090/S0002-9939-2011-10922-5.  Google Scholar

[40]

P. Olver, Applications of Lie Groups to Differential Equations Springer, New York, 1986. doi: 10.1007/978-1-4684-0274-2.  Google Scholar

[41]

L. V. Ovsiannikov, Group Analysis of Differential Equations Academic Press, 1982.  Google Scholar

[42]

S. Zhou, Well-posedness and blowup phenomena for a cross-coupled Camassa-Holm equation with waltzing peakons and compacton pairs, J. Evol. Equ., 14 (2014), 727-747.  doi: 10.1007/s00028-014-0236-4.  Google Scholar

[43]

Y. Zhu and F. Fu, Persistence properties of the solutions to a generalized two-component Camassa-Holm shallow water system, Nonlinear Analysis: Theory, Methods and Applications, 128 (2015), 77-85.  doi: 10.1016/j.na.2015.07.027.  Google Scholar

Table 1.  The commutation table of Lie algebra
$[V_i,V_j]$ $V_1$ $V_2$ $V_3$
$V_1$ 0 $-V_2$ 0
$V_2$ $V_2$ 0 0
$V_3$ 0 $0$ 0
$[V_i,V_j]$ $V_1$ $V_2$ $V_3$
$V_1$ 0 $-V_2$ 0
$V_2$ $V_2$ 0 0
$V_3$ 0 $0$ 0
Table 2.  The adjoint representation
$Ad(\exp(\epsilon V_i))V_j$ $V_1$ $V_2$ $V_3$
$V_1$ $V_1$ $e^\epsilon V_2$ $V_3$
$V_2$ $V_1-\epsilon V_2$ $V_2$ $V_3$
$V_3$ $V_1$ $V_2$ $V_3$
$Ad(\exp(\epsilon V_i))V_j$ $V_1$ $V_2$ $V_3$
$V_1$ $V_1$ $e^\epsilon V_2$ $V_3$
$V_2$ $V_1-\epsilon V_2$ $V_2$ $V_3$
$V_3$ $V_1$ $V_2$ $V_3$
[1]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[2]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[3]

Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021007

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[6]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[7]

Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021010

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[10]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[11]

Sascha Kurz. The $[46, 9, 20]_2$ code is unique. Advances in Mathematics of Communications, 2021, 15 (3) : 415-422. doi: 10.3934/amc.2020074

[12]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[13]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[14]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[15]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[16]

Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035

[17]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[18]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[19]

Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021079

[20]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (132)
  • HTML views (82)
  • Cited by (1)

Other articles
by authors

[Back to Top]