January  2018, 38(1): 343-361. doi: 10.3934/dcds.2018017

Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one

Université de Bretagne Occidentale, LMBA, CNRS UMR 6205, Institut des sciences et Techniques, 29238 Brest Cedex 3, France

* Corresponding author: Nasab Yassine

Received  September 2016 Revised  July 2017 Published  September 2017

We are interested in the asymptotic behaviour of the first return time of the orbits of a dynamical system into a small neighbourhood of their starting points. We study this quantity in the context of dynamical systems preserving an infinite measure. More precisely, we consider the case of $\mathbb{Z}$-extensions of subshifts of finite type. We also consider a toy probabilistic model to enlight the strategy of our proofs.

Citation: Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017
References:
[1]

M. Abadi and A. Galves, Inequalities for the occurrence times of rare events in mixing processes, Markov Process. Related Fields, 7 (2001), 97-112.   Google Scholar

[2]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.  Google Scholar

[3]

X. Bressaud and R. Zweimüller, Non exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure, Ann. Henri Poincaré, 2 (2001), 501-512.  doi: 10.1007/PL00001042.  Google Scholar

[4]

W. Feller, An Introduction to Probability Theory and its Application 2 2nd edition, Wiley, New york, 1971. doi: 10.2307/3029053.  Google Scholar

[5]

Y. Givarc'h and J. Hardy, Théorémes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Annales Inst. H. Poincaré(B), Probabilités et Statistiques, 24 (1988), 73-98.   Google Scholar

[6]

H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness Lecture Notes in Mathematics, 1766 Springer, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[7]

M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergodic Theory and Dynamical Systems, 13 (1993), 533-556.  doi: 10.1017/S0143385700007513.  Google Scholar

[8]

S. V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probab. Appl., 2 (1957), 378-406.   Google Scholar

[9]

S. V. Nagaev, More exact statement of limit theores of homogeneous Markov chains, Theor. Probab. Appl., 6 (1961), 62-81.   Google Scholar

[10]

F. Péne and B. Saussol, Back to balls in billiards, Comm. Math. Phys., 293 (2010), 837-866.  doi: 10.1007/s00220-009-0911-4.  Google Scholar

[11]

F. Péne and B. Saussol, Quantitative recurrence in two-dimensioinal extended processes, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1065-1084.  doi: 10.1214/08-AIHP195.  Google Scholar

[12]

F. PéneB. Saussol and R. Zweimüller, Recurrence rates and hitting-time distributions for random walks on the line, The Annals of Probability, 41 (2013), 619-635.  doi: 10.1214/11-AOP698.  Google Scholar

[13]

F. PéneB. Saussol and R. Zweimüller, Return and hitting time limits for rare events of null-recurrent Markov maps, Ergod. Th. Dynam. Sys., 37 (2017), 244-276.  doi: 10.1017/etds.2015.38.  Google Scholar

[14]

B. Saussol, An introduction to quantitative poincaré recurrence in dynamical systems, Reviews in Mathematical Physics, 21 (2009), 949-979.  doi: 10.1142/S0129055X09003785.  Google Scholar

[15]

B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete and Continuous Dynamical Systems, 15 (2006), 259-267.  doi: 10.3934/dcds.2006.15.259.  Google Scholar

show all references

References:
[1]

M. Abadi and A. Galves, Inequalities for the occurrence times of rare events in mixing processes, Markov Process. Related Fields, 7 (2001), 97-112.   Google Scholar

[2]

R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 2008.  Google Scholar

[3]

X. Bressaud and R. Zweimüller, Non exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure, Ann. Henri Poincaré, 2 (2001), 501-512.  doi: 10.1007/PL00001042.  Google Scholar

[4]

W. Feller, An Introduction to Probability Theory and its Application 2 2nd edition, Wiley, New york, 1971. doi: 10.2307/3029053.  Google Scholar

[5]

Y. Givarc'h and J. Hardy, Théorémes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov, Annales Inst. H. Poincaré(B), Probabilités et Statistiques, 24 (1988), 73-98.   Google Scholar

[6]

H. Hennion and L. Hervé, Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness Lecture Notes in Mathematics, 1766 Springer, Berlin, 2001. doi: 10.1007/b87874.  Google Scholar

[7]

M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergodic Theory and Dynamical Systems, 13 (1993), 533-556.  doi: 10.1017/S0143385700007513.  Google Scholar

[8]

S. V. Nagaev, Some limit theorems for stationary Markov chains, Theor. Probab. Appl., 2 (1957), 378-406.   Google Scholar

[9]

S. V. Nagaev, More exact statement of limit theores of homogeneous Markov chains, Theor. Probab. Appl., 6 (1961), 62-81.   Google Scholar

[10]

F. Péne and B. Saussol, Back to balls in billiards, Comm. Math. Phys., 293 (2010), 837-866.  doi: 10.1007/s00220-009-0911-4.  Google Scholar

[11]

F. Péne and B. Saussol, Quantitative recurrence in two-dimensioinal extended processes, Ann. Inst. Henri Poincaré Probab. Stat., 45 (2009), 1065-1084.  doi: 10.1214/08-AIHP195.  Google Scholar

[12]

F. PéneB. Saussol and R. Zweimüller, Recurrence rates and hitting-time distributions for random walks on the line, The Annals of Probability, 41 (2013), 619-635.  doi: 10.1214/11-AOP698.  Google Scholar

[13]

F. PéneB. Saussol and R. Zweimüller, Return and hitting time limits for rare events of null-recurrent Markov maps, Ergod. Th. Dynam. Sys., 37 (2017), 244-276.  doi: 10.1017/etds.2015.38.  Google Scholar

[14]

B. Saussol, An introduction to quantitative poincaré recurrence in dynamical systems, Reviews in Mathematical Physics, 21 (2009), 949-979.  doi: 10.1142/S0129055X09003785.  Google Scholar

[15]

B. Saussol, Recurrence rate in rapidly mixing dynamical systems, Discrete and Continuous Dynamical Systems, 15 (2006), 259-267.  doi: 10.3934/dcds.2006.15.259.  Google Scholar

[1]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[3]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[4]

Yves Capdeboscq, Shaun Chen Yang Ong. Quantitative jacobian determinant bounds for the conductivity equation in high contrast composite media. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3857-3887. doi: 10.3934/dcdsb.2020228

[5]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[6]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[7]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[8]

Jaume Llibre, Claudia Valls. Rational limit cycles of Abel equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1077-1089. doi: 10.3934/cpaa.2021007

[9]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021015

[10]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[11]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[12]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[13]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[14]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[15]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[16]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[17]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[19]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[20]

Rong Rong, Yi Peng. KdV-type equation limit for ion dynamics system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021037

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (87)
  • HTML views (69)
  • Cited by (1)

Other articles
by authors

[Back to Top]