Advanced Search
Article Contents
Article Contents

LP decay for general hyperbolic-parabolic systems of balance laws

This work was partially supported by a grant from the Simons Foundation (#244905 to Yanni Zeng)

Abstract Full Text(HTML) Related Papers Cited by
  • We study time asymptotic decay of solutions for a general system of hyperbolic-parabolic balance laws in multi space dimensions. The system has physical viscosity matrices and a lower order term for relaxation, damping or chemical reaction. The viscosity matrices and the Jacobian matrix of the lower order term are rank deficient. For Cauchy problem around a constant equilibrium state, existence of solution global in time has been established recently under a set of reasonable assumptions. In this paper we obtain optimal $L^p$ decay rates for $p≥2$. Our result is general and applies to physical models such as gas flows with translational and vibrational non-equilibrium. Our result also recovers or improves the existing results in literature on the special cases of hyperbolic-parabolic conservation laws and hyperbolic balance laws, respectively.

    Mathematics Subject Classification: Primary:35B40, 35M31;Secondary:35Q35.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   J. F. Clarke and M. McChesney, Dynamics of Relaxing Gases 2nd edition, Butterworths, London, 1976.
      K. O. Friedrichs  and  P. D. Lax , Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A., 68 (1971) , 1686-1688. 
      S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics Doctoral thesis, Kyoto University, 1983.
      S. Kawashima  and  W.-A. Yong , Decay estimates for hyperbolic balance laws, Z. Anal. Anwend., 28 (2009) , 1-33.  doi: 10.4171/ZAA/1369.
      T.-P Liu  and  Y Zen , arge time behavior of solutions for gene, Mem. Amer. Math. Soc., 1525 (1997) , ⅷ+120 pp.  doi: 10.1090/memo/0599.
      T.-P. Liu  and  Y. Zeng , Compressible Navier-Stokes equations with zero heat conductivity, J. Differential Equations, 153 (1999) , 225-291.  doi: 10.1006/jdeq.1998.3554.
      T.-P. Liu  and  Y. Zen , Shock waves in conservation laws with physical viscosity, Mem. Amer. Math. Soc., 234 (2015) , ⅵ+168 pp.  doi: 10.1090/memo/1105.
      L. Nirenberg , On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959) , 115-162. 
      Y. Shizuta  and  S. Kawashima , Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985) , 249-275.  doi: 10.14492/hokmj/1381757663.
      W. Vincenti and  C. Kruger JrIntroduction to Physical Gas Dynamics, Krieger Publishing Company, 1986. 
      Y. Zeng , Global existence theory for a general class of hyperbolic balance laws, Bulletin, Inst. Math. Academia Sinica, 10 (2015) , 143-170. 
      Y. Zeng , On Cauchy problems of thermal non-equilibrium flows with small data, Bull. Braz. Math. Soc. (N.S.), 47 (2016) , 799-809.  doi: 10.1007/s00574-016-0187-1.
      Y. Zeng , Global existence theory for general hyperbolic-parabolic balance laws with application, J. Hyperbolic Differ. Equ., 14 (2017) , 359-391.  doi: 10.1142/S0219891617500126.
      Y. Zeng  and  J. Chen , Pointwise time asymptotic behavior of solutions to a general class of hyperbolic balance laws, J. Differential Equations, 260 (2016) , 6745-6786.  doi: 10.1016/j.jde.2016.01.013.
  • 加载中

Article Metrics

HTML views(285) PDF downloads(203) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint