January  2018, 38(1): 397-429. doi: 10.3934/dcds.2018019

Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA

Received  September 2016 Revised  August 2017 Published  September 2017

The focus of the current paper is the higher order nonlinear dispersive equation which models unidirectional propagation of small amplitude long waves in dispersive media. The specific interest is in the initial-boundary value problem where spatial variable lies in $\mathbb R^+,$ namely, quarter plane problem. With proper requirement on initial and boundary condition, we show local and global well posedness.

Citation: Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

B. Boczar-Karakiewicz, J. L. Bona, W. Romanczyk and E. B. Thornton, Seasonal and interseasonal vaiability of sand bars at Duck, NC, USA. Observations and model predictions}, submitted. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. Bona, X. Carvajar, M. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, to appear in Journal of Nonlinear Science and in https://arxiv.org/pdf/1509.08510.pdf. Google Scholar

[5]

J. L. BonaH. Chen and C.-H. Hsia, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Continuous Dyn. Systems, Series A, 23 (2009), 1253-1275.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[6]

J. L. BonaH. ChenS. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problems: The BBM-equation, Discrete Continuous Dyn. Systems, 13 (2005), 921-940.  doi: 10.3934/dcds.2005.13.921.  Google Scholar

[7]

J. L. Bona and V. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[8]

J. L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves, In Evolution Equations, (ed. G. Gerreyra, G. Goldstein and F. Neubrander), Lecture Notes in Pure and Appl. Math. , Marcel Dekker: New York, 168 (1995), 65-94. Google Scholar

[9]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal. Soc. London, Series A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[10]

J. L. BonaS. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[11]

J. L. Bona and V. Varlamov, Wave generation by a moving boundary, Contemp. Math., 371 (2005), 41-71.  doi: 10.1090/conm/371/06847.  Google Scholar

[12]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Eqns., 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[13]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

B. Boczar-Karakiewicz, J. L. Bona, W. Romanczyk and E. B. Thornton, Seasonal and interseasonal vaiability of sand bars at Duck, NC, USA. Observations and model predictions}, submitted. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. Bona, X. Carvajar, M. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, to appear in Journal of Nonlinear Science and in https://arxiv.org/pdf/1509.08510.pdf. Google Scholar

[5]

J. L. BonaH. Chen and C.-H. Hsia, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Continuous Dyn. Systems, Series A, 23 (2009), 1253-1275.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[6]

J. L. BonaH. ChenS. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problems: The BBM-equation, Discrete Continuous Dyn. Systems, 13 (2005), 921-940.  doi: 10.3934/dcds.2005.13.921.  Google Scholar

[7]

J. L. Bona and V. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[8]

J. L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves, In Evolution Equations, (ed. G. Gerreyra, G. Goldstein and F. Neubrander), Lecture Notes in Pure and Appl. Math. , Marcel Dekker: New York, 168 (1995), 65-94. Google Scholar

[9]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal. Soc. London, Series A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[10]

J. L. BonaS. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[11]

J. L. Bona and V. Varlamov, Wave generation by a moving boundary, Contemp. Math., 371 (2005), 41-71.  doi: 10.1090/conm/371/06847.  Google Scholar

[12]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Eqns., 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[13]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[1]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[3]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[7]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[8]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[9]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[10]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[11]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[12]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[13]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[16]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[17]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[18]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056

[19]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[20]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (68)
  • HTML views (65)
  • Cited by (3)

Other articles
by authors

[Back to Top]