January  2018, 38(1): 397-429. doi: 10.3934/dcds.2018019

Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane

Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA

Received  September 2016 Revised  August 2017 Published  September 2017

The focus of the current paper is the higher order nonlinear dispersive equation which models unidirectional propagation of small amplitude long waves in dispersive media. The specific interest is in the initial-boundary value problem where spatial variable lies in $\mathbb R^+,$ namely, quarter plane problem. With proper requirement on initial and boundary condition, we show local and global well posedness.

Citation: Hongqiu Chen. Well-posedness for a higher-order, nonlinear, dispersive equation on a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 397-429. doi: 10.3934/dcds.2018019
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

B. Boczar-Karakiewicz, J. L. Bona, W. Romanczyk and E. B. Thornton, Seasonal and interseasonal vaiability of sand bars at Duck, NC, USA. Observations and model predictions}, submitted. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. Bona, X. Carvajar, M. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, to appear in Journal of Nonlinear Science and in https://arxiv.org/pdf/1509.08510.pdf. Google Scholar

[5]

J. L. BonaH. Chen and C.-H. Hsia, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Continuous Dyn. Systems, Series A, 23 (2009), 1253-1275.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[6]

J. L. BonaH. ChenS. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problems: The BBM-equation, Discrete Continuous Dyn. Systems, 13 (2005), 921-940.  doi: 10.3934/dcds.2005.13.921.  Google Scholar

[7]

J. L. Bona and V. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[8]

J. L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves, In Evolution Equations, (ed. G. Gerreyra, G. Goldstein and F. Neubrander), Lecture Notes in Pure and Appl. Math. , Marcel Dekker: New York, 168 (1995), 65-94. Google Scholar

[9]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal. Soc. London, Series A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[10]

J. L. BonaS. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[11]

J. L. Bona and V. Varlamov, Wave generation by a moving boundary, Contemp. Math., 371 (2005), 41-71.  doi: 10.1090/conm/371/06847.  Google Scholar

[12]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Eqns., 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[13]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Royal Soc. London, Series A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

B. Boczar-Karakiewicz, J. L. Bona, W. Romanczyk and E. B. Thornton, Seasonal and interseasonal vaiability of sand bars at Duck, NC, USA. Observations and model predictions}, submitted. Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Cambridge Philos. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. Bona, X. Carvajar, M. Panthee and M. Scialom, Higher-order Hamiltonian model for unidirectional water waves, to appear in Journal of Nonlinear Science and in https://arxiv.org/pdf/1509.08510.pdf. Google Scholar

[5]

J. L. BonaH. Chen and C.-H. Hsia, Well-posedness for regularized nonlinear dispersive wave equations, Discrete Continuous Dyn. Systems, Series A, 23 (2009), 1253-1275.  doi: 10.3934/dcds.2009.23.1253.  Google Scholar

[6]

J. L. BonaH. ChenS. Sun and B.-Y. Zhang, Comparison of quarter-plane and two-point boundary value problems: The BBM-equation, Discrete Continuous Dyn. Systems, 13 (2005), 921-940.  doi: 10.3934/dcds.2005.13.921.  Google Scholar

[7]

J. L. Bona and V. Dougalis, An initial and boundary value problem for a model equation for propagation of long waves, J. Math. Anal. Appl., 75 (1980), 503-522.  doi: 10.1016/0022-247X(80)90098-0.  Google Scholar

[8]

J. L. Bona and L. Luo, Initial-boundary-value problems for model equations for the propagation of long waves, In Evolution Equations, (ed. G. Gerreyra, G. Goldstein and F. Neubrander), Lecture Notes in Pure and Appl. Math. , Marcel Dekker: New York, 168 (1995), 65-94. Google Scholar

[9]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Royal. Soc. London, Series A, 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[10]

J. L. BonaS. Sun and B.-Y. Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. American Math. Soc., 354 (2002), 427-490.  doi: 10.1090/S0002-9947-01-02885-9.  Google Scholar

[11]

J. L. Bona and V. Varlamov, Wave generation by a moving boundary, Contemp. Math., 371 (2005), 41-71.  doi: 10.1090/conm/371/06847.  Google Scholar

[12]

J. Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Eqns., 31 (2006), 1151-1190.  doi: 10.1080/03605300600718503.  Google Scholar

[13]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[1]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[2]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

[3]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[4]

Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253

[5]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[6]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[7]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[8]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[9]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[10]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[11]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[12]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[13]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[14]

Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671

[15]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[16]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[17]

Keyan Wang. Global well-posedness for a transport equation with non-local velocity and critical diffusion. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1203-1210. doi: 10.3934/cpaa.2008.7.1203

[18]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[19]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[20]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure & Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (32)
  • HTML views (15)
  • Cited by (0)

Other articles
by authors

[Back to Top]