February  2018, 38(2): 485-507. doi: 10.3934/dcds.2018022

Positive solutions for critically coupled Schrödinger systems with attractive interactions

College of Science, Wuhan University of Science and Technology, Wuhan 430065, China

Received  March 2017 Revised  August 2017 Published  February 2018

Fund Project: a: Partially supported by NSFC NO: 11501428, NSFC NO: 11371159

In this paper, we consider the following coupled Schrödinger system with doubly critical exponents:
$\left\{ {\begin{array}{*{20}{l}}{ - \Delta u + {\lambda _1}u = {\mu _1}{u^3} + \beta u{v^2},}&{x \in \Omega ,}\\{ - \Delta v + {\lambda _2}v = {\mu _2}{v^3} + \beta v{u^2},}&{x \in \Omega ,}\\{u,v \ge 0,}&{x \in \Omega ,}\\{u = v = 0,}&{x \in \partial \Omega ,}\end{array}} \right.$
where
$Ω\subset\mathbb R^4$
is a smooth bounded domain,
$μ_1, μ_2>0$
and
$β>0$
,
$-λ_1(Ω)<λ_1, λ_2<0$
, here
$λ_1(Ω)$
is the first eigenvalue of
$-Δ$
with the Dirichlet boundary condition. We give the optimal ranges of
$β>0$
for the existence of positive solutions to the problem, which is an open problem proposed by Chen and Zou in [Arch. Rational Mech. Anal. 205 (2012), 515-551]. Finally, as a by-product of our approaches, we extend the existence results to a critically coupled Schrödinger system defined in the whole space:
$\left\{ \begin{array}{l} - \Delta u + u = {\mu _1}{u^3} + \beta u{v^2} + f(u),\;\;\;\;x \in {\mathbb R^4},\\ - \Delta v + v = {\mu _2}{v^3} + \beta v{u^2} + g(v),\;\;\;\;\;x \in {\mathbb R^4}.\end{array} \right.$
Citation: Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022
References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661-2664.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[4]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDE., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[5]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Diff. Equ., 19 (2006), 200-207.   Google Scholar

[6]

T. BartschZ. Q. Wang and J. C. Wei, Bounded states for a coupled Schrödinger system, J. Fixed point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437--477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

D. M. Cao and X. P. Zhu, On the existence and nodal character of solution of semilinear elliptic equation, Acta Math. Sci., 8 (1988), 345-359.   Google Scholar

[9]

Z. J. Chen and W. M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[10]

N. DancerJ. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[11]

Y. B. Deng, the existence and nodal character of the solutions in $\mathbb R^n$ for semilinear elliptic equation involving critical Sobolev exponent, Acta Math. Sci., 9 (1989), 385-402.   Google Scholar

[12]

B. EsryC. GreeneJ. Burke and J. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[13]

S. Kim, On vertor solutions for coupled nonlinear Schrödinger equations with critical exponents, Comm. Pure Appl. Anal., 12 (2013), 1259-1277.  doi: 10.3934/cpaa.2013.12.1259.  Google Scholar

[14]

T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbb R^n$, $n≤q3$, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[15]

T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[16]

T. C. Lin and J. C. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differ. Equ., 229 (2006), 538-569.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[17]

Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[18]

L. A. MaiaE. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equ., 229 (2006), 743-767.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[19]

C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE. J. Quantum Electron, 23 (1987), 174-176.  doi: 10.1109/JQE.1987.1073308.  Google Scholar

[20]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differ. Equ., 227 (2006), 258-281.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[21]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[22]

J. C. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.  doi: 10.4171/RLM/495.  Google Scholar

[23]

J. C. Wei and T. Weth, Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity, 21 (2008), 305-317.  doi: 10.1088/0951-7715/21/2/006.  Google Scholar

[24]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

H. Y. Ye and Y. F. Peng, Positive least energy solutions for a coupled Schrödinger system with critical exponent, J. Math. Anal. Appl., 417 (2014), 308-326.  doi: 10.1016/j.jmaa.2014.03.028.  Google Scholar

show all references

References:
[1]

N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661-2664.  doi: 10.1103/PhysRevLett.82.2661.  Google Scholar

[2]

A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006), 453-458.  doi: 10.1016/j.crma.2006.01.024.  Google Scholar

[3]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007), 67-82.  doi: 10.1112/jlms/jdl020.  Google Scholar

[4]

T. BartschN. Dancer and Z. Q. Wang, A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDE., 37 (2010), 345-361.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[5]

T. Bartsch and Z. Q. Wang, Note on ground states of nonlinear Schrödinger systems, J. Partial Diff. Equ., 19 (2006), 200-207.   Google Scholar

[6]

T. BartschZ. Q. Wang and J. C. Wei, Bounded states for a coupled Schrödinger system, J. Fixed point Theory Appl., 2 (2007), 353-367.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[7]

H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983), 437--477.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

D. M. Cao and X. P. Zhu, On the existence and nodal character of solution of semilinear elliptic equation, Acta Math. Sci., 8 (1988), 345-359.   Google Scholar

[9]

Z. J. Chen and W. M. Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012), 515-551.  doi: 10.1007/s00205-012-0513-8.  Google Scholar

[10]

N. DancerJ. C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[11]

Y. B. Deng, the existence and nodal character of the solutions in $\mathbb R^n$ for semilinear elliptic equation involving critical Sobolev exponent, Acta Math. Sci., 9 (1989), 385-402.   Google Scholar

[12]

B. EsryC. GreeneJ. Burke and J. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597.  doi: 10.1103/PhysRevLett.78.3594.  Google Scholar

[13]

S. Kim, On vertor solutions for coupled nonlinear Schrödinger equations with critical exponents, Comm. Pure Appl. Anal., 12 (2013), 1259-1277.  doi: 10.3934/cpaa.2013.12.1259.  Google Scholar

[14]

T. C. Lin and J. C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbb R^n$, $n≤q3$, Comm. Math. Phys., 255 (2005), 629-653.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[15]

T. C. Lin and J. C. Wei, Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[16]

T. C. Lin and J. C. Wei, Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differ. Equ., 229 (2006), 538-569.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[17]

Z. L. Liu and Z. Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[18]

L. A. MaiaE. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equ., 229 (2006), 743-767.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[19]

C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE. J. Quantum Electron, 23 (1987), 174-176.  doi: 10.1109/JQE.1987.1073308.  Google Scholar

[20]

A. Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differ. Equ., 227 (2006), 258-281.  doi: 10.1016/j.jde.2005.09.002.  Google Scholar

[21]

W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-162.  doi: 10.1007/BF01626517.  Google Scholar

[22]

J. C. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007), 279-293.  doi: 10.4171/RLM/495.  Google Scholar

[23]

J. C. Wei and T. Weth, Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity, 21 (2008), 305-317.  doi: 10.1088/0951-7715/21/2/006.  Google Scholar

[24]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[25]

H. Y. Ye and Y. F. Peng, Positive least energy solutions for a coupled Schrödinger system with critical exponent, J. Math. Anal. Appl., 417 (2014), 308-326.  doi: 10.1016/j.jmaa.2014.03.028.  Google Scholar

[1]

Isabel Flores. Singular solutions of the Brezis-Nirenberg problem in a ball. Communications on Pure & Applied Analysis, 2009, 8 (2) : 673-682. doi: 10.3934/cpaa.2009.8.673

[2]

Raffaella Servadei, Enrico Valdinoci. A Brezis-Nirenberg result for non-local critical equations in low dimension. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2445-2464. doi: 10.3934/cpaa.2013.12.2445

[3]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[4]

Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563

[5]

Zhongliang Wang. Nonradial positive solutions for a biharmonic critical growth problem. Communications on Pure & Applied Analysis, 2012, 11 (2) : 517-545. doi: 10.3934/cpaa.2012.11.517

[6]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[7]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[8]

Elvise Berchio, Filippo Gazzola. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 809-823. doi: 10.3934/dcdss.2011.4.809

[9]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[10]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[11]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[12]

Shengbing Deng, Fethi Mahmoudi, Monica Musso. Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3035-3076. doi: 10.3934/dcds.2016.36.3035

[13]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[14]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[15]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[16]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[17]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[18]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[19]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[20]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (82)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]