In this paper, we consider the following coupled Schrödinger system with doubly critical exponents:
$\left\{ {\begin{array}{*{20}{l}}{ - \Delta u + {\lambda _1}u = {\mu _1}{u^3} + \beta u{v^2},}&{x \in \Omega ,}\\{ - \Delta v + {\lambda _2}v = {\mu _2}{v^3} + \beta v{u^2},}&{x \in \Omega ,}\\{u,v \ge 0,}&{x \in \Omega ,}\\{u = v = 0,}&{x \in \partial \Omega ,}\end{array}} \right.$
where
$\left\{ \begin{array}{l} - \Delta u + u = {\mu _1}{u^3} + \beta u{v^2} + f(u),\;\;\;\;x \in {\mathbb R^4},\\ - \Delta v + v = {\mu _2}{v^3} + \beta v{u^2} + g(v),\;\;\;\;\;x \in {\mathbb R^4}.\end{array} \right.$
Citation: |
N. Akhmediev and A. Ankiewicz , Partially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999) , 2661-2664. doi: 10.1103/PhysRevLett.82.2661. | |
A. Ambrosetti and E. Colorado , Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342 (2006) , 453-458. doi: 10.1016/j.crma.2006.01.024. | |
A. Ambrosetti and E. Colorado , Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75 (2007) , 67-82. doi: 10.1112/jlms/jdl020. | |
T. Bartsch , N. Dancer and Z. Q. Wang , A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. PDE., 37 (2010) , 345-361. doi: 10.1007/s00526-009-0265-y. | |
T. Bartsch and Z. Q. Wang , Note on ground states of nonlinear Schrödinger systems, J. Partial Diff. Equ., 19 (2006) , 200-207. | |
T. Bartsch , Z. Q. Wang and J. C. Wei , Bounded states for a coupled Schrödinger system, J. Fixed point Theory Appl., 2 (2007) , 353-367. doi: 10.1007/s11784-007-0033-6. | |
H. Brezis and L. Nirenberg , Positive solutions of nonlinear elliptic problems involving critical Sobolev exponent, Comm. Pure Appl. Math., 36 (1983) , 437--477. doi: 10.1002/cpa.3160360405. | |
D. M. Cao and X. P. Zhu , On the existence and nodal character of solution of semilinear elliptic equation, Acta Math. Sci., 8 (1988) , 345-359. | |
Z. J. Chen and W. M. Zou , Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Rational Mech. Anal., 205 (2012) , 515-551. doi: 10.1007/s00205-012-0513-8. | |
N. Dancer , J. C. Wei and T. Weth , A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010) , 953-969. doi: 10.1016/j.anihpc.2010.01.009. | |
Y. B. Deng , the existence and nodal character of the solutions in $\mathbb R^n$ for semilinear elliptic equation involving critical Sobolev exponent, Acta Math. Sci., 9 (1989) , 385-402. | |
B. Esry , C. Greene , J. Burke and J. Bohn , Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997) , 3594-3597. doi: 10.1103/PhysRevLett.78.3594. | |
S. Kim , On vertor solutions for coupled nonlinear Schrödinger equations with critical exponents, Comm. Pure Appl. Anal., 12 (2013) , 1259-1277. doi: 10.3934/cpaa.2013.12.1259. | |
T. C. Lin and J. C. Wei , Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbb R^n$, $n≤q3$, Comm. Math. Phys., 255 (2005) , 629-653. doi: 10.1007/s00220-005-1313-x. | |
T. C. Lin and J. C. Wei , Spikes in two coupled nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005) , 403-439. doi: 10.1016/j.anihpc.2004.03.004. | |
T. C. Lin and J. C. Wei , Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differ. Equ., 229 (2006) , 538-569. doi: 10.1016/j.jde.2005.12.011. | |
Z. L. Liu and Z. Q. Wang , Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008) , 721-731. doi: 10.1007/s00220-008-0546-x. | |
L. A. Maia , E. Montefusco and B. Pellacci , Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equ., 229 (2006) , 743-767. doi: 10.1016/j.jde.2006.07.002. | |
C. R. Menyuk , Nonlinear pulse propagation in birefringent optical fibers, IEEE. J. Quantum Electron, 23 (1987) , 174-176. doi: 10.1109/JQE.1987.1073308. | |
A. Pomponio , Coupled nonlinear Schrödinger systems with potentials, J. Differ. Equ., 227 (2006) , 258-281. doi: 10.1016/j.jde.2005.09.002. | |
W. A. Strauss , Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977) , 149-162. doi: 10.1007/BF01626517. | |
J. C. Wei and T. Weth , Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18 (2007) , 279-293. doi: 10.4171/RLM/495. | |
J. C. Wei and T. Weth , Asymptotic behavior of solutions of planar elliptic systems with strong competition, Nonlinearity, 21 (2008) , 305-317. doi: 10.1088/0951-7715/21/2/006. | |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1. | |
H. Y. Ye and Y. F. Peng , Positive least energy solutions for a coupled Schrödinger system with critical exponent, J. Math. Anal. Appl., 417 (2014) , 308-326. doi: 10.1016/j.jmaa.2014.03.028. |