We consider the global wellposedness problem for the nonlinear Schrödinger equation
$i\partial_t u = [-\tfrac{1}{2} Δ + V(x)] u ± |u|^{4/(d-2)} u, \ u(0)∈ Σ(\mathbf{R}^d),$
where $Σ$ is the weighted Sobolev space $\dot{H}^1 \cap |x|^{-1} L^2$. The case $V(x) = \tfrac{1}{2}|x|^2$ was recently treated by the author. This note generalizes the results to a class of "approximately quadratic" potentials.
We closely follow the previous concentration compactness arguments for the harmonic oscillator. A key technical difference is that in the absence of a concrete formula for the linear propagator, we apply more general tools from microlocal analysis, including a Fourier integral parametrix of Fujiwara.
Citation: |
K. Asada
and D. Fujiwara
, On some oscillatory integral transformations in $L^{2}(\textbf{R}^{n})$, Japan. J. Math. (N.S.), 4 (1978)
, 299-361.
![]() ![]() |
|
J. Bourgain
, Global wellposedness of defocusing critical nonlinear {S}chrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999)
, 145-171.
doi: 10.1090/S0894-0347-99-00283-0.![]() ![]() ![]() |
|
H. Brézis
and E. Lieb
, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.2307/2044999.![]() ![]() ![]() |
|
R. Carles
, Nonlinear schrödinger equation with time-dependent potential, Commun. Math Sci., 9 (2011)
, 937-964.
doi: 10.4310/CMS.2011.v9.n4.a1.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008)
, 767-865.
doi: 10.4007/annals.2008.167.767.![]() ![]() ![]() |
|
G. B. Folland, Harmonic Analysis in Phase Space vol. 122 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1989.
doi: 10.1515/9781400882427.![]() ![]() ![]() |
|
D. Fujiwara
, On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad., 51 (1975)
, 96-99.
doi: 10.3792/pja/1195518693.![]() ![]() ![]() |
|
D. Fujiwara
, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979)
, 41-96.
doi: 10.1007/BF02791062.![]() ![]() ![]() |
|
D. Fujiwara
, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980)
, 559-600.
doi: 10.1215/S0012-7094-80-04734-1.![]() ![]() ![]() |
|
W. Hebisch
, A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990)
, 659-664.
doi: 10.4064/cm-60-61-2-659-664.![]() ![]() ![]() |
|
A. D. Ionescu
and B. Pausader
, The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012)
, 1581-1612.
doi: 10.1215/00127094-1593335.![]() ![]() ![]() |
|
A. D. Ionescu
and B. Pausader
, Global well-posedness of the energy-critical defocusing {NLS} on $\mathbb{R}× \mathbb{T}^3$, Comm. Math. Phys., 312 (2012)
, 781-831.
doi: 10.1007/s00220-012-1474-3.![]() ![]() ![]() |
|
A. D. Ionescu
, B. Pausader
and G. Staffilani
, On the global well-posedness of energy-critical {S}chrödinger equations in curved spaces, Anal. PDE, 5 (2012)
, 705-746.
doi: 10.2140/apde.2012.5.705.![]() ![]() ![]() |
|
C. Jao
, The energy-critical quantum harmonic oscillator, Comm. Partial Differential Equations, 41 (2016)
, 79-133.
doi: 10.1080/03605302.2015.1095767.![]() ![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998)
, 955-980.
doi: 10.1353/ajm.1998.0039.![]() ![]() ![]() |
|
C. E. Kenig
and F. Merle
, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006)
, 645-675.
doi: 10.1007/s00222-006-0011-4.![]() ![]() ![]() |
|
S. Keraani
, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006)
, 171-192.
doi: 10.1016/j.jfa.2005.10.005.![]() ![]() ![]() |
|
R. Killip
, S. Kwon
, S. Shao
and M. Visan
, On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., 32 (2012)
, 191-221.
doi: 10.3934/dcds.2012.32.191.![]() ![]() ![]() |
|
R. Killip
, B. Stovall
and M. Visan
, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012)
, 1571-1631.
doi: 10.1090/S0002-9947-2011-05536-4.![]() ![]() ![]() |
|
R. Killip
and M. Visan
, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010)
, 361-424.
doi: 10.1353/ajm.0.0107.![]() ![]() ![]() |
|
R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in Evolution equations, vol. 17 of Clay Math. Proc., Amer. Math. Soc., Providence, RI, 2013,325–437.
![]() |
|
R. Killip
, M. Visan
and X. Zhang
, Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math., 138 (2016)
, 1193-1346.
doi: 10.1353/ajm.2016.0039.![]() ![]() ![]() |
|
R. Killip
, M. Visan
and X. Zhang
, Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, 34 (2009)
, 1531-1565.
doi: 10.1080/03605300903328109.![]() ![]() ![]() |
|
Y.-G. Oh
, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989)
, 255-274.
doi: 10.1016/0022-0396(89)90123-X.![]() ![]() ![]() |
|
E. Ryckman
and M. Visan
, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007)
, 1-60.
doi: 10.1353/ajm.2007.0004.![]() ![]() ![]() |
|
M. E. Taylor, Tools for PDE vol. 81 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Pseudodifferential operators, paradifferential operators, and layer potentials.
![]() ![]() |
|
M. Visan
, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007)
, 281-374.
doi: 10.1215/S0012-7094-07-13825-0.![]() ![]() ![]() |
|
J. Zhang
, Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000)
, 731-746.
doi: 10.1023/A:1026437923987.![]() ![]() ![]() |