\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Energy-critical NLS with potentials of quadratic growth

The first author is supported by NSF grants DMS-0838680, DMS-1265868, DMS-0901166, DMS-1161396.

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the global wellposedness problem for the nonlinear Schrödinger equation

    $i\partial_t u = [-\tfrac{1}{2} Δ + V(x)] u ± |u|^{4/(d-2)} u, \ u(0)∈ Σ(\mathbf{R}^d),$

    where $Σ$ is the weighted Sobolev space $\dot{H}^1 \cap |x|^{-1} L^2$. The case $V(x) = \tfrac{1}{2}|x|^2$ was recently treated by the author. This note generalizes the results to a class of "approximately quadratic" potentials.

    We closely follow the previous concentration compactness arguments for the harmonic oscillator. A key technical difference is that in the absence of a concrete formula for the linear propagator, we apply more general tools from microlocal analysis, including a Fourier integral parametrix of Fujiwara.

    Mathematics Subject Classification: Primary: 35Q55; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   K. Asada  and  D. Fujiwara , On some oscillatory integral transformations in $L^{2}(\textbf{R}^{n})$, Japan. J. Math. (N.S.), 4 (1978) , 299-361. 
      J. Bourgain , Global wellposedness of defocusing critical nonlinear {S}chrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999) , 145-171.  doi: 10.1090/S0894-0347-99-00283-0.
      H. Brézis  and  E. Lieb , A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983) , 486-490.  doi: 10.2307/2044999.
      R. Carles , Nonlinear schrödinger equation with time-dependent potential, Commun. Math Sci., 9 (2011) , 937-964.  doi: 10.4310/CMS.2011.v9.n4.a1.
      J. Colliander , M. Keel , G. Staffilani , H. Takaoka  and  T. Tao , Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008) , 767-865.  doi: 10.4007/annals.2008.167.767.
      G. B. Folland, Harmonic Analysis in Phase Space vol. 122 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1989. doi: 10.1515/9781400882427.
      D. Fujiwara , On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad., 51 (1975) , 96-99.  doi: 10.3792/pja/1195518693.
      D. Fujiwara , A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979) , 41-96.  doi: 10.1007/BF02791062.
      D. Fujiwara , Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980) , 559-600.  doi: 10.1215/S0012-7094-80-04734-1.
      W. Hebisch , A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990) , 659-664.  doi: 10.4064/cm-60-61-2-659-664.
      A. D. Ionescu  and  B. Pausader , The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012) , 1581-1612.  doi: 10.1215/00127094-1593335.
      A. D. Ionescu  and  B. Pausader , Global well-posedness of the energy-critical defocusing {NLS} on $\mathbb{R}× \mathbb{T}^3$, Comm. Math. Phys., 312 (2012) , 781-831.  doi: 10.1007/s00220-012-1474-3.
      A. D. Ionescu , B. Pausader  and  G. Staffilani , On the global well-posedness of energy-critical {S}chrödinger equations in curved spaces, Anal. PDE, 5 (2012) , 705-746.  doi: 10.2140/apde.2012.5.705.
      C. Jao , The energy-critical quantum harmonic oscillator, Comm. Partial Differential Equations, 41 (2016) , 79-133.  doi: 10.1080/03605302.2015.1095767.
      M. Keel  and  T. Tao , Endpoint Strichartz estimates, Amer. J. Math., 120 (1998) , 955-980.  doi: 10.1353/ajm.1998.0039.
      C. E. Kenig  and  F. Merle , Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006) , 645-675.  doi: 10.1007/s00222-006-0011-4.
      S. Keraani , On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006) , 171-192.  doi: 10.1016/j.jfa.2005.10.005.
      R. Killip , S. Kwon , S. Shao  and  M. Visan , On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., 32 (2012) , 191-221.  doi: 10.3934/dcds.2012.32.191.
      R. Killip , B. Stovall  and  M. Visan , Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012) , 1571-1631.  doi: 10.1090/S0002-9947-2011-05536-4.
      R. Killip  and  M. Visan , The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010) , 361-424.  doi: 10.1353/ajm.0.0107.
      R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in Evolution equations, vol. 17 of Clay Math. Proc., Amer. Math. Soc., Providence, RI, 2013,325–437.
      R. Killip , M. Visan  and  X. Zhang , Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math., 138 (2016) , 1193-1346.  doi: 10.1353/ajm.2016.0039.
      R. Killip , M. Visan  and  X. Zhang , Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, 34 (2009) , 1531-1565.  doi: 10.1080/03605300903328109.
      Y.-G. Oh , Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989) , 255-274.  doi: 10.1016/0022-0396(89)90123-X.
      E. Ryckman  and  M. Visan , Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007) , 1-60.  doi: 10.1353/ajm.2007.0004.
      M. E. Taylor, Tools for PDE vol. 81 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Pseudodifferential operators, paradifferential operators, and layer potentials.
      M. Visan , The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007) , 281-374.  doi: 10.1215/S0012-7094-07-13825-0.
      J. Zhang , Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000) , 731-746.  doi: 10.1023/A:1026437923987.
  • 加载中
SHARE

Article Metrics

HTML views(322) PDF downloads(176) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return