February  2018, 38(2): 563-587. doi: 10.3934/dcds.2018025

Energy-critical NLS with potentials of quadratic growth

Department of Mathematics, UC Berkeley, Berkeley, CA 94720, USA

Received  April 2017 Published  February 2018

Fund Project: The first author is supported by NSF grants DMS-0838680, DMS-1265868, DMS-0901166, DMS-1161396.

We consider the global wellposedness problem for the nonlinear Schrödinger equation
$i\partial_t u = [-\tfrac{1}{2} Δ + V(x)] u ± |u|^{4/(d-2)} u, \ u(0)∈ Σ(\mathbf{R}^d),$
where
$Σ$
is the weighted Sobolev space
$\dot{H}^1 \cap |x|^{-1} L^2$
. The case
$V(x) = \tfrac{1}{2}|x|^2$
was recently treated by the author. This note generalizes the results to a class of "approximately quadratic" potentials.
We closely follow the previous concentration compactness arguments for the harmonic oscillator. A key technical difference is that in the absence of a concrete formula for the linear propagator, we apply more general tools from microlocal analysis, including a Fourier integral parametrix of Fujiwara.
Citation: Casey Jao. Energy-critical NLS with potentials of quadratic growth. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 563-587. doi: 10.3934/dcds.2018025
References:
[1]

K. Asada and D. Fujiwara, On some oscillatory integral transformations in $L^{2}(\textbf{R}^{n})$, Japan. J. Math. (N.S.), 4 (1978), 299-361. Google Scholar

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear {S}chrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. doi: 10.1090/S0894-0347-99-00283-0. Google Scholar

[3]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[4]

R. Carles, Nonlinear schrödinger equation with time-dependent potential, Commun. Math Sci., 9 (2011), 937-964. doi: 10.4310/CMS.2011.v9.n4.a1. Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767. Google Scholar

[6]

G. B. Folland, Harmonic Analysis in Phase Space vol. 122 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1989. doi: 10.1515/9781400882427. Google Scholar

[7]

D. Fujiwara, On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad., 51 (1975), 96-99. doi: 10.3792/pja/1195518693. Google Scholar

[8]

D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41-96. doi: 10.1007/BF02791062. Google Scholar

[9]

D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600. doi: 10.1215/S0012-7094-80-04734-1. Google Scholar

[10]

W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990), 659-664. doi: 10.4064/cm-60-61-2-659-664. Google Scholar

[11]

A. D. Ionescu and B. Pausader, The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012), 1581-1612. doi: 10.1215/00127094-1593335. Google Scholar

[12]

A. D. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing {NLS} on $\mathbb{R}× \mathbb{T}^3$, Comm. Math. Phys., 312 (2012), 781-831. doi: 10.1007/s00220-012-1474-3. Google Scholar

[13]

A. D. IonescuB. Pausader and G. Staffilani, On the global well-posedness of energy-critical {S}chrödinger equations in curved spaces, Anal. PDE, 5 (2012), 705-746. doi: 10.2140/apde.2012.5.705. Google Scholar

[14]

C. Jao, The energy-critical quantum harmonic oscillator, Comm. Partial Differential Equations, 41 (2016), 79-133. doi: 10.1080/03605302.2015.1095767. Google Scholar

[15]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039. Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4. Google Scholar

[17]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192. doi: 10.1016/j.jfa.2005.10.005. Google Scholar

[18]

R. KillipS. KwonS. Shao and M. Visan, On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., 32 (2012), 191-221. doi: 10.3934/dcds.2012.32.191. Google Scholar

[19]

R. KillipB. Stovall and M. Visan, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012), 1571-1631. doi: 10.1090/S0002-9947-2011-05536-4. Google Scholar

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107. Google Scholar

[21]

R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in Evolution equations, vol. 17 of Clay Math. Proc., Amer. Math. Soc., Providence, RI, 2013,325–437.Google Scholar

[22]

R. KillipM. Visan and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math., 138 (2016), 1193-1346. doi: 10.1353/ajm.2016.0039. Google Scholar

[23]

R. KillipM. Visan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, 34 (2009), 1531-1565. doi: 10.1080/03605300903328109. Google Scholar

[24]

Y.-G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X. Google Scholar

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60. doi: 10.1353/ajm.2007.0004. Google Scholar

[26]

M. E. Taylor, Tools for PDE vol. 81 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Pseudodifferential operators, paradifferential operators, and layer potentials. Google Scholar

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0. Google Scholar

[28]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987. Google Scholar

show all references

References:
[1]

K. Asada and D. Fujiwara, On some oscillatory integral transformations in $L^{2}(\textbf{R}^{n})$, Japan. J. Math. (N.S.), 4 (1978), 299-361. Google Scholar

[2]

J. Bourgain, Global wellposedness of defocusing critical nonlinear {S}chrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145-171. doi: 10.1090/S0894-0347-99-00283-0. Google Scholar

[3]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490. doi: 10.2307/2044999. Google Scholar

[4]

R. Carles, Nonlinear schrödinger equation with time-dependent potential, Commun. Math Sci., 9 (2011), 937-964. doi: 10.4310/CMS.2011.v9.n4.a1. Google Scholar

[5]

J. CollianderM. KeelG. StaffilaniH. Takaoka and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2), 167 (2008), 767-865. doi: 10.4007/annals.2008.167.767. Google Scholar

[6]

G. B. Folland, Harmonic Analysis in Phase Space vol. 122 of Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 1989. doi: 10.1515/9781400882427. Google Scholar

[7]

D. Fujiwara, On the boundedness of integral transformations with highly oscillatory kernels, Proc. Japan Acad., 51 (1975), 96-99. doi: 10.3792/pja/1195518693. Google Scholar

[8]

D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41-96. doi: 10.1007/BF02791062. Google Scholar

[9]

D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600. doi: 10.1215/S0012-7094-80-04734-1. Google Scholar

[10]

W. Hebisch, A multiplier theorem for Schrödinger operators, Colloq. Math., 60/61 (1990), 659-664. doi: 10.4064/cm-60-61-2-659-664. Google Scholar

[11]

A. D. Ionescu and B. Pausader, The energy-critical defocusing NLS on $\mathbb{T}^3$, Duke Math. J., 161 (2012), 1581-1612. doi: 10.1215/00127094-1593335. Google Scholar

[12]

A. D. Ionescu and B. Pausader, Global well-posedness of the energy-critical defocusing {NLS} on $\mathbb{R}× \mathbb{T}^3$, Comm. Math. Phys., 312 (2012), 781-831. doi: 10.1007/s00220-012-1474-3. Google Scholar

[13]

A. D. IonescuB. Pausader and G. Staffilani, On the global well-posedness of energy-critical {S}chrödinger equations in curved spaces, Anal. PDE, 5 (2012), 705-746. doi: 10.2140/apde.2012.5.705. Google Scholar

[14]

C. Jao, The energy-critical quantum harmonic oscillator, Comm. Partial Differential Equations, 41 (2016), 79-133. doi: 10.1080/03605302.2015.1095767. Google Scholar

[15]

M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980. doi: 10.1353/ajm.1998.0039. Google Scholar

[16]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645-675. doi: 10.1007/s00222-006-0011-4. Google Scholar

[17]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171-192. doi: 10.1016/j.jfa.2005.10.005. Google Scholar

[18]

R. KillipS. KwonS. Shao and M. Visan, On the mass-critical generalized KdV equation, Discrete Contin. Dyn. Syst., 32 (2012), 191-221. doi: 10.3934/dcds.2012.32.191. Google Scholar

[19]

R. KillipB. Stovall and M. Visan, Scattering for the cubic Klein-Gordon equation in two space dimensions, Trans. Amer. Math. Soc., 364 (2012), 1571-1631. doi: 10.1090/S0002-9947-2011-05536-4. Google Scholar

[20]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., 132 (2010), 361-424. doi: 10.1353/ajm.0.0107. Google Scholar

[21]

R. Killip and M. Vişan, Nonlinear Schrödinger equations at critical regularity, in Evolution equations, vol. 17 of Clay Math. Proc., Amer. Math. Soc., Providence, RI, 2013,325–437.Google Scholar

[22]

R. KillipM. Visan and X. Zhang, Quintic NLS in the exterior of a strictly convex obstacle, Amer. J. Math., 138 (2016), 1193-1346. doi: 10.1353/ajm.2016.0039. Google Scholar

[23]

R. KillipM. Visan and X. Zhang, Energy-critical NLS with quadratic potentials, Comm. Partial Differential Equations, 34 (2009), 1531-1565. doi: 10.1080/03605300903328109. Google Scholar

[24]

Y.-G. Oh, Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials, J. Differential Equations, 81 (1989), 255-274. doi: 10.1016/0022-0396(89)90123-X. Google Scholar

[25]

E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math., 129 (2007), 1-60. doi: 10.1353/ajm.2007.0004. Google Scholar

[26]

M. E. Taylor, Tools for PDE vol. 81 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2000, Pseudodifferential operators, paradifferential operators, and layer potentials. Google Scholar

[27]

M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281-374. doi: 10.1215/S0012-7094-07-13825-0. Google Scholar

[28]

J. Zhang, Stability of attractive Bose-Einstein condensates, J. Statist. Phys., 101 (2000), 731-746. doi: 10.1023/A:1026437923987. Google Scholar

[1]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[2]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[3]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[4]

Rowan Killip, Changxing Miao, Monica Visan, Junyong Zhang, Jiqiang Zheng. The energy-critical NLS with inverse-square potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3831-3866. doi: 10.3934/dcds.2017162

[5]

Joachim Krieger, Kenji Nakanishi, Wilhelm Schlag. Global dynamics of the nonradial energy-critical wave equation above the ground state energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2423-2450. doi: 10.3934/dcds.2013.33.2423

[6]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[7]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[8]

J. Colliander, M. Keel, Gigliola Staffilani, H. Takaoka, T. Tao. Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 665-686. doi: 10.3934/dcds.2008.21.665

[9]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems & Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[10]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[11]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[12]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[13]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[14]

Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations & Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337

[15]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[16]

Vincenzo Ambrosio. Concentration phenomena for critical fractional Schrödinger systems. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2085-2123. doi: 10.3934/cpaa.2018099

[17]

M. Burak Erdoǧan, William R. Green. Dispersive estimates for matrix Schrödinger operators in dimension two. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4473-4495. doi: 10.3934/dcds.2013.33.4473

[18]

Jon Chaika, David Damanik, Helge Krüger. Schrödinger operators defined by interval-exchange transformations. Journal of Modern Dynamics, 2009, 3 (2) : 253-270. doi: 10.3934/jmd.2009.3.253

[19]

Woocheol Choi, Yong-Cheol Kim. The Malgrange-Ehrenpreis theorem for nonlocal Schrödinger operators with certain potentials. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1993-2010. doi: 10.3934/cpaa.2018095

[20]

Niels Jacob, Feng-Yu Wang. Higher order eigenvalues for non-local Schrödinger operators. Communications on Pure & Applied Analysis, 2018, 17 (1) : 191-208. doi: 10.3934/cpaa.2018012

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (43)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]