-
Previous Article
On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex
- DCDS Home
- This Issue
-
Next Article
Energy-critical NLS with potentials of quadratic growth
Bounded and unbounded capillary surfaces derived from the catenoid
1. | KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea |
2. | KIAS, School of Mathematics, 87 Hoegi-ro, Dongdaemun-gu, Seoul, South Korea |
We construct two kinds of capillary surfaces by using a perturbation method. Surfaces of first kind are embedded in a solid ball B of $\mathbb{R}^3$ with assigned mean curvature function and whose boundary curves lie on $\partial B.$ The contact angle along such curves is a non-constant function. Surfaces of second kind are unbounded and embedded in $\mathbb{R}^3 \setminus \tilde B,$ $\tilde B$ being a deformation of a solid ball in $\mathbb{R}^3.$ These surfaces have assigned mean curvature function and one boundary curve on $\partial \tilde B.$ Also in this case the contact angle along the boundary is a non-constant function.
References:
[1] |
C. Gerhardt,
Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.
|
[2] |
G. Lieberman,
Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59.
doi: 10.1080/03605308808820537. |
[3] |
F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp.
doi: 10.1186/1687-2770-2014-130. |
[4] |
F. Morabito,
Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001.
doi: 10.3934/dcds.2015.35.4987. |
[5] |
F. Morabito,
Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525.
doi: 10.1016/j.jmaa.2016.05.006. |
[6] |
L. Simon and J. Spruck,
Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.
doi: 10.1007/BF00251860. |
[7] |
J. Spruck,
On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.
doi: 10.1002/cpa.3160280202. |
[8] |
N. Uraltseva,
Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.
|
show all references
References:
[1] |
C. Gerhardt,
Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.
|
[2] |
G. Lieberman,
Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59.
doi: 10.1080/03605308808820537. |
[3] |
F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp.
doi: 10.1186/1687-2770-2014-130. |
[4] |
F. Morabito,
Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001.
doi: 10.3934/dcds.2015.35.4987. |
[5] |
F. Morabito,
Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525.
doi: 10.1016/j.jmaa.2016.05.006. |
[6] |
L. Simon and J. Spruck,
Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.
doi: 10.1007/BF00251860. |
[7] |
J. Spruck,
On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.
doi: 10.1002/cpa.3160280202. |
[8] |
N. Uraltseva,
Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.
|
[1] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[2] |
Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 |
[3] |
Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211 |
[4] |
Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 |
[5] |
Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 |
[6] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[7] |
Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927 |
[8] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[9] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[10] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[11] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[12] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[13] |
Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183 |
[14] |
Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 |
[15] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[16] |
Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313 |
[17] |
Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621 |
[18] |
Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467 |
[19] |
Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248 |
[20] |
Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]