# American Institute of Mathematical Sciences

February  2018, 38(2): 589-614. doi: 10.3934/dcds.2018026

## Bounded and unbounded capillary surfaces derived from the catenoid

 1 KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea 2 KIAS, School of Mathematics, 87 Hoegi-ro, Dongdaemun-gu, Seoul, South Korea

Received  April 2017 Revised  August 2017 Published  February 2018

Fund Project: This research was supported by Basic Science Research Program through the National Research Foundation of South Korea (NRF) funded by the Ministry of Education, Grant NRF- 2016R1A1A005299.

We construct two kinds of capillary surfaces by using a perturbation method. Surfaces of first kind are embedded in a solid ball B of $\mathbb{R}^3$ with assigned mean curvature function and whose boundary curves lie on $\partial B.$ The contact angle along such curves is a non-constant function. Surfaces of second kind are unbounded and embedded in $\mathbb{R}^3 \setminus \tilde B,$ $\tilde B$ being a deformation of a solid ball in $\mathbb{R}^3.$ These surfaces have assigned mean curvature function and one boundary curve on $\partial \tilde B.$ Also in this case the contact angle along the boundary is a non-constant function.

Citation: Filippo Morabito. Bounded and unbounded capillary surfaces derived from the catenoid. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 589-614. doi: 10.3934/dcds.2018026
##### References:
 [1] C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.   Google Scholar [2] G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar [3] F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp. doi: 10.1186/1687-2770-2014-130.  Google Scholar [4] F. Morabito, Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001.  doi: 10.3934/dcds.2015.35.4987.  Google Scholar [5] F. Morabito, Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525.  doi: 10.1016/j.jmaa.2016.05.006.  Google Scholar [6] L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar [7] J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar [8] N. Uraltseva, Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.   Google Scholar

show all references

##### References:
 [1] C. Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 157-175.   Google Scholar [2] G. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Commun. Partial Diff. Equations, 13 (1988), 33-59.  doi: 10.1080/03605308808820537.  Google Scholar [3] F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbb{R}^3$ Boundary Value Problems 2014 (2014), 23pp. doi: 10.1186/1687-2770-2014-130.  Google Scholar [4] F. Morabito, Singly periodic minimal surfaces in a solid cylinder of $\mathbb{R}^3$, Discrete Continuous Dynamical Systems, 35 (2015), 4987-5001.  doi: 10.3934/dcds.2015.35.4987.  Google Scholar [5] F. Morabito, Free boundaries surfaces and Saddle Tower minimal surfaces in ${\mathbb S}^2 × \mathbb{R}$, Journal of Mathematical Analysis and Applications, 443 (2016), 478-525.  doi: 10.1016/j.jmaa.2016.05.006.  Google Scholar [6] L. Simon and J. Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal., 61 (1976), 19-34.  doi: 10.1007/BF00251860.  Google Scholar [7] J. Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math., 28 (1975), 189-200.  doi: 10.1002/cpa.3160280202.  Google Scholar [8] N. Uraltseva, Solvability of the capillary problem, Vestnik Leningrad. Univ., 19 (1973), 54-64,152.   Google Scholar
 [1] Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 [2] Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645 [3] Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211 [4] Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775 [5] Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 [6] Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 [7] Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178 [8] Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2733-2759. doi: 10.3934/jimo.2020092 [9] Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021046 [10] Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927 [11] Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 [12] Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 [13] Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 [14] Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 [15] Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 [16] Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183 [17] Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 [18] Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 [19] Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313 [20] Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

2020 Impact Factor: 1.392