February  2018, 38(2): 715-722. doi: 10.3934/dcds.2018031

The continuum limit of Follow-the-Leader models — a short proof

1. 

Department of Mathematical Sciences, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

2. 

Department of Mathematics, University of Oslo, Blindern, NO-0316 Oslo, Norway

* Corresponding author: Helge Holden

We dedicate this paper to the memory of Hans Petter Langtangen (1962–2016)

Received  July 2017 Published  February 2018

Fund Project: Research was supported by the grant Waves and Nonlinear Phenomena (WaNP) from the Research Council of Norway. The research was done while the authors were at Institut MittagLeffler, Stockholm

We offer a simple and self-contained proof that the Follow-the-Leader model converges to the Lighthill-Whitham-Richards model for traffic flow.

Citation: Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031
References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215. Google Scholar

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955. Google Scholar

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13. Google Scholar

[4]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413. doi: 10.3934/nhm.2016002. Google Scholar

[5]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501. doi: 10.1007/s40574-017-0132-2. Google Scholar

[6]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar

[7]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287. doi: 10.4310/CMS.2017.v15.n1.a12. Google Scholar

[8]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.Google Scholar

[9]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2. Google Scholar

[10]

H. Holden and N. H. Risebro. Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Preprint, arXiv: 1702.01718, 2017.Google Scholar

[11]

M. J. Lighthill and G. B. Whitham, Kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar

[12]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar

[13]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579. Google Scholar

show all references

References:
[1]

B. ArgallE. CheleshkinJ. M. GreenbergC. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215. Google Scholar

[2]

A. AwA. KlarT. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955. Google Scholar

[3]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, Rend. Sem. Math. Univ. Padova, 131 (2014), 217-235. doi: 10.4171/RSMUP/131-13. Google Scholar

[4]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, Networks and Heterogeneous Media, 11 (2016), 395-413. doi: 10.3934/nhm.2016002. Google Scholar

[5]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Boll. Unione Mat. Ital., 10 (2017), 487-501. doi: 10.1007/s40574-017-0132-2. Google Scholar

[6]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871. doi: 10.1007/s00205-015-0843-4. Google Scholar

[7]

P. Goatin and F. Rossi, A traffic flow model with non-smooth metric interaction: well-posedness and micro-macro limit, Commun. Math. Sci., 15 (2017), 261-287. doi: 10.4310/CMS.2017.v15.n1.a12. Google Scholar

[8]

K. Han, T. Yaob and T. L. Friesz, Lagrangian-based hydrodynamic model: Freeway traffic estimation, Preprint, arXiv: 1211.4619v1, 2012.Google Scholar

[9]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, New York, 2015, Second edition. doi: 10.1007/978-3-662-47507-2. Google Scholar

[10]

H. Holden and N. H. Risebro. Follow-the-leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Preprint, arXiv: 1702.01718, 2017.Google Scholar

[11]

M. J. Lighthill and G. B. Whitham, Kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. (London), Series A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089. Google Scholar

[12]

P. I. Richards, Shockwaves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42. Google Scholar

[13]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete Cont. Dyn. Syst. Series S, 7 (2014), 579-591. doi: 10.3934/dcdss.2014.7.579. Google Scholar

[1]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[2]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks & Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[3]

Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond. Time-delayed follow-the-leader model for pedestrians walking in line. Networks & Heterogeneous Media, 2015, 10 (3) : 579-608. doi: 10.3934/nhm.2015.10.579

[4]

Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579

[5]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks & Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[6]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[7]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[8]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks & Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[9]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[10]

Xiaoming Wang. On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 489-501. doi: 10.3934/dcdsb.2010.13.489

[11]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[12]

Veronika Schleper. A hybrid model for traffic flow and crowd dynamics with random individual properties. Mathematical Biosciences & Engineering, 2015, 12 (2) : 393-413. doi: 10.3934/mbe.2015.12.393

[13]

Emiliano Cristiani, Fabio S. Priuli. A destination-preserving model for simulating Wardrop equilibria in traffic flow on networks. Networks & Heterogeneous Media, 2015, 10 (4) : 857-876. doi: 10.3934/nhm.2015.10.857

[14]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[15]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060

[16]

Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202

[17]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[18]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks & Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[19]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[20]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (38)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]