In this paper, the Cauchy problem of classical Hamiltonian PDEs is recast into a Liouville's equation with measure-valued solutions. Then a uniqueness property for the latter equation is proved under some natural assumptions. Our result extends the method of characteristics to Hamiltonian systems with infinite degrees of freedom and it applies to a large variety of Hamiltonian PDEs (Hartree, Klein-Gordon, Schrödinger, Wave, Yukawa $\dots$). The main arguments in the proof are a projective point of view and a probabilistic representation of measure-valued solutions to continuity equations in finite dimension.
Citation: |
R. Adami
, C. Bardos
, F. Golse
and A. Teta
, Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal., 40 (2004)
, 93-108.
![]() ![]() |
|
L. Ambrosio
and G. Crippa
, Continuity equations and ODE flows with non-smooth velocity, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014)
, 1191-1244.
doi: 10.1017/S0308210513000085.![]() ![]() ![]() |
|
L. Ambrosio
and A. Figalli
, On flows associated to Sobolev vector fields in Wiener spaces: An approach à la DiPerna-Lions, J. Funct. Anal., 256 (2009)
, 179-214.
doi: 10.1016/j.jfa.2008.05.007.![]() ![]() ![]() |
|
L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems, Oxford mathematical monographs Clarendon Press, 2000.
![]() ![]() |
|
L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, second edition, 2008.
![]() ![]() |
|
Z. Ammari
and S. Breteaux
, Propagation of chaos for many-boson systems in one dimension with a point pair-interaction, Asymptot. Anal., 76 (2012)
, 123-170.
![]() ![]() |
|
Z. Ammari
and M. Falconi
, Wigner measures approach to the classical limit of the Nelson model: convergence of dynamics and ground state energy, J. Stat. Phys., 157 (2014)
, 330-362.
doi: 10.1007/s10955-014-1079-7.![]() ![]() ![]() |
|
Z. Ammari and M. Falconi, Bohr's correspondence principle for the renormalized Nelson model, arXiv: 1602.03212.
![]() |
|
Z. Ammari
and F. Nier
, Mean field limit for bosons and infinite dimensional phase-space analysis, Ann. Henri Poincaré, 9 (2008)
, 1503-1574.
doi: 10.1007/s00023-008-0393-5.![]() ![]() ![]() |
|
Z. Ammari and F. Nier, Mean field limit for bosons and propagation of Wigner measures J. Math. Phys. 50 (2009), 042107, 16pp.
doi: 10.1063/1.3115046.![]() ![]() ![]() |
|
Z. Ammari
and F. Nier
, Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states, J. Math. Pures Appl., 95 (2011)
, 585-626.
doi: 10.1016/j.matpur.2010.12.004.![]() ![]() ![]() |
|
Z. Ammari
and F. Nier
, Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential, Ann. Sc. Norm. Super. Pisa Cl. Sci., 14 (2015)
, 155-220.
![]() ![]() |
|
Z. Ammari
and M. Zerzeri
, On the classical limit of self-interacting quantum field Hamiltonians with cutoffs, Hokkaido Math. J., 43 (2014)
, 385-425.
doi: 10.14492/hokmj/1416837571.![]() ![]() ![]() |
|
H. Bahouri
and J.-Y. Chemin
, Equations de transport relatives á des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., 127 (1994)
, 159-181.
doi: 10.1007/BF00377659.![]() ![]() ![]() |
|
C. Bardos
, F. Golse
and N. J. Mauser
, Weak coupling limit of the N-particle Schrödinger equation, Methods Appl. Anal., 7 (2000)
, 275-293.
doi: 10.4310/MAA.2000.v7.n2.a2.![]() ![]() ![]() |
|
P. Bernard
, Young measures, superposition and transport, Indiana Univ. Math. J., 57 (2008)
, 247-275.
doi: 10.1512/iumj.2008.57.3163.![]() ![]() ![]() |
|
J. Bourgain
, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys., 166 (1994)
, 1-26.
![]() ![]() |
|
N. Burq
and N. Tzvetkov
, Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc., 16 (2014)
, 1-30.
doi: 10.4171/JEMS/426.![]() ![]() ![]() |
|
E. Carlen
, J. Fröhlich
and J. Lebowitz
, Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise, Comm. Math. Phys., 342 (2016)
, 303-332.
doi: 10.1007/s00220-015-2511-9.![]() ![]() ![]() |
|
T. Cazenave,
Semilinear Schrödinger Equations volume 10 of Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
|
T. Cazenave and A. Haraux,
An Introduction to Semilinear Evolution Equations Oxford Lecture Series in Mathematics and its Applications, 1998.
![]() ![]() |
|
T. Chen
, C. Hainzl
, N. Pavlovic
and R. Seiringer
, Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti, Commun. Pure Appl. Math., 68 (2015)
, 1845-1884.
doi: 10.1002/cpa.21552.![]() ![]() ![]() |
|
J. Colliander
, J. Holmer
and N. Tzirakis
, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Math. Soc., 360 (2008)
, 4619-4638.
doi: 10.1090/S0002-9947-08-04295-5.![]() ![]() ![]() |
|
F. Colombini
and N. Lerner
, Uniqueness of continuous solutions for BV vector fields, Duke Math. J., 111 (2002)
, 357-384.
doi: 10.1215/S0012-7094-01-11126-5.![]() ![]() ![]() |
|
G. Crippa,
The Flow Associated to Weakly Differentiable Vector Fields volume 12 of Theses of Scuola Normale Superiore di Pisa. Edizioni della Normale, Pisa, 2009.
![]() ![]() |
|
R. J. DiPerna
, Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985)
, 223-270.
doi: 10.1007/BF00752112.![]() ![]() ![]() |
|
R. J. DiPerna
and P. L. Lions
, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989)
, 511-547.
doi: 10.1007/BF01393835.![]() ![]() ![]() |
|
M. Donald
, The classical field limit of $P{(\varphi )_2}$ quantum field theory, Comm. Math. Phys., 79 (1981)
, 153-165.
![]() ![]() |
|
L. Erdös
, B. Schlein
and H. T. Yau
, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 167 (2007)
, 515-604.
doi: 10.1007/s00222-006-0022-1.![]() ![]() ![]() |
|
J. Fröhlich
, S. Graffi
and S. Schwarz
, Mean-field-and classical limit of many-body Schrödinger dynamics for bosons, Comm. Math. Phys., 271 (2007)
, 681-697.
doi: 10.1007/s00220-007-0207-5.![]() ![]() ![]() |
|
J. Ginibre
and G. Velo
, The classical field limit of scattering theory for nonrelativistic many-boson systems, I, Comm. Math. Phys., 66 (1979)
, 37-76.
![]() ![]() |
|
J. Ginibre
and G. Velo
, The global Cauchy problem for the nonlinear Klein-Gordon equation, Math. Z., 189 (1985)
, 487-505.
doi: 10.1007/BF01168155.![]() ![]() ![]() |
|
K. Hepp
, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys., 35 (1974)
, 265-277.
doi: 10.1007/BF01646348.![]() ![]() ![]() |
|
S. Klainerman
and M. Machedon
, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Commun. Math. Phys., 279 (2008)
, 169-185.
doi: 10.1007/s00220-008-0426-4.![]() ![]() ![]() |
|
A. Knowles
and P. Pickl
, Mean-field dynamics: Singular potentials and rate of convergence, Comm. Math. Phys., 298 (2010)
, 101-138.
doi: 10.1007/s00220-010-1010-2.![]() ![]() ![]() |
|
A. V. Kolesnikov
and M. Röckner
, On continuity equations in infinite dimensions with non-Gaussian reference measure, J. Funct. Anal., 266 (2014)
, 4490-4537.
doi: 10.1016/j.jfa.2014.01.010.![]() ![]() ![]() |
|
J. Lebowitz
, H. A. Rose
and E. R. Speer
, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys., 50 (1988)
, 657-687.
doi: 10.1007/BF01026495.![]() ![]() ![]() |
|
Q. Liard,
Dérivation Des Équations de Schrödinger non Linéaires Par Une Méthode Des Caractéristiques en Dimension Infinie, PHD Thesis (Rennes) 2015.
![]() |
|
Q. Liard
, On the mean-field approximation of many-boson dynamics, J. Funct. Anal., 273 (2017)
, 1397-1442.
doi: 10.1016/j.jfa.2017.04.016.![]() ![]() ![]() |
|
Q. Liard and B. Pawilowski, Mean field limit for bosons with compact kernels interactions by Wigner measures transportation Journal of Mathematical Physics 55 (2014), 092304, 23pp.
doi: 10.1063/1. 4895467.![]() ![]() ![]() |
|
M. Mandelkern
, On the uniform continuity of Tietze extensions, Arch. Math., 55 (1990)
, 387-388.
doi: 10.1007/BF01198478.![]() ![]() ![]() |
|
S. Maniglia
, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations, J. Math. Pures Appl., 87 (2007)
, 601-626.
doi: 10.1016/j.matpur.2007.04.001.![]() ![]() ![]() |
|
H. P. McKean and K. L. Vaninsky, Statistical mechanics of nonlinear wave equations, in Trends and perspectives in applied mathematics, (eds. L. Sirovich), Appl. Math. Sci. AMS, 100 (1994), 239-264.
doi: 10.1007/978-1-4612-0859-4_8.![]() ![]() ![]() |
|
H. Pecher
, Some new well-posedness results for the Klein-Gordon-Schrödinger system, Differential Integral Equations, 25 (2012)
, 117-142.
![]() ![]() |
|
F. Poupaud
and M. Rascle
, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations, 22 (1997)
, 337-358.
doi: 10.1080/03605309708821265.![]() ![]() ![]() |
|
L. Schwartz,
Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures Oxford University Press, London, 1973.
![]() ![]() |
|
I. Segal
, Construction of non-linear local quantum processes, I, Ann. of Math., 92 (1970)
, 462-481.
doi: 10.2307/1970628.![]() ![]() ![]() |
|
B. Simon,
The P(φ)2 Euclidean (Quantum) Field Theory Princeton University Press, Princeton, N. J., 1974.
![]() ![]() |
|
H. Spohn, Kinetic equations from Hamiltonian dynamics: The Markovian approximations,
in Kinetic theory and gas dynamics, volume 293 of CISM Courses and Lectures, Springer,
(1988), 183-211.
doi: 10.1007/978-3-7091-2762-9_6.![]() ![]() ![]() |
|
C. Swartz,
Measure, Integration and Function Spaces World Scientific Publishing Co., Inc., River Edge, NJ, 1994.
doi: 10.1142/2223.![]() ![]() ![]() |
|
J. Szczepański
, On the basis of statistical mechanics. The Liouville equation for systems with an infinite countable number of degrees of freedom, Phys. A, 157 (1989)
, 955-982.
doi: 10.1016/0378-4371(89)90075-7.![]() ![]() ![]() |