February  2018, 38(2): 835-866. doi: 10.3934/dcds.2018036

Reversing and extended symmetries of shift spaces

1. 

Faculty of Mathematics, Universität Bielefeld, Box 100131,33501 Bielefeld, Germany

2. 

School of Mathematics and Statistics, UNSW, Sydney, NSW 2052, Australia

3. 

IRIF, Université Paris-Diderot — Paris 7, Case 7014,75205 Paris Cedex 13, France

Received  January 2017 Revised  September 2017 Published  February 2018

The reversing symmetry group is considered in the setting of symbolic dynamics. While this group is generally too big to be analysed in detail, there are interesting cases with some form of rigidity where one can determine all symmetries and reversing symmetries explicitly. They include Sturmian shifts as well as classic examples such as the Thue–Morse system with various generalisations or the Rudin–Shapiro system. We also look at generalisations of the reversing symmetry group to higher-dimensional shift spaces, then called the group of extended symmetries. We develop their basic theory for faithful $\mathbb{Z}^{d}$-actions, and determine the extended symmetry group of the chair tiling shift, which can be described as a model set, and of Ledrappier's shift, which is an example of algebraic origin.

Citation: Michael Baake, John A. G. Roberts, Reem Yassawi. Reversing and extended symmetries of shift spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 835-866. doi: 10.3934/dcds.2018036
References:
[1]

J. -P. Allouche and J. Shallit, Automatic Sequences Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563. Google Scholar

[2]

L. Arenas-CarmonaD. Berend and V. Bergelson, Ledrappier's system is almost mixing of all orders, Ergodic Th. & Dynam. Syst., 28 (2008), 339-365. doi: 10.1017/S0143385707000727. Google Scholar

[3]

J. Auslander, Endomorphisms of minimal sets, Duke Math. J., 30 (1963), 605-614. doi: 10.1215/S0012-7094-63-03065-5. Google Scholar

[4]

M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys., 25 (1984), 3171-3182. doi: 10.1063/1.526087. Google Scholar

[5]

M. BaakeF. Gähler and U. Grimm, Spectral and topological properties of a family of generalised Thue–Morse sequences, J. Math. Phys., 53 (2012), 032701, 24pp. doi: 10.1063/1.3688337. Google Scholar

[6]

M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation Cambridge Univ. Press, Cambridge, 2013. doi: 10.1017/CBO9781139025256. Google Scholar

[7]

M. BaakeJ. Hermisson and P. A. B. Pleasants, The torus parametrization of quasiperiodic LI classes, J. Phys. A: Math. Gen., 30 (1997), 3029-3056. doi: 10.1088/0305-4470/30/9/016. Google Scholar

[8]

M. BaakeR. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$-th power free integers, Discr. Math., 221 (2000), 3-42. doi: 10.1016/S0012-365X(99)00384-2. Google Scholar

[9]

M. Baake and J. A. G. Roberts, Symmetries and reversing symmetries of polynomial automorphisms of the plane, Nonlinearity, 18 (2005), 791-816. doi: 10.1088/0951-7715/18/2/017. Google Scholar

[10]

M. Baake and J. A. G. Roberts, Symmetries and reversing symmetries of toral automorphisms, Nonlinearity, 14 (2001), R1-R24. doi: 10.1088/0951-7715/14/4/201. Google Scholar

[11]

M. Baake and J. A. G. Roberts. The structure of reversing symmetry groups, The structure of reversing symmetry groups, Bull. Austral. Math. Soc., 73 (2006), 445-459. doi: 10.1017/S0004972700035450. Google Scholar

[12]

M. Baake and T. Ward, Planar dynamical systems with pure Lebesgue diffraction spectrum, J. Stat. Phys., 140 (2010), 90-102. doi: 10.1007/s10955-010-9984-x. Google Scholar

[13]

J. Berstel, L. Boasson, O. Carton and I. Fagnot, Infinite words without palindrome, preprint, arXiv: 0903.2382.Google Scholar

[14]

S. Bhattacharya and K. Schmidt, Homoclinic points and isomorphism rigidity of algebraic $\mathbb{Z}^{d}$-actions on zero-dimensional compact Abelian groups, Israel J. Math., 137 (2003), 189-209. doi: 10.1007/BF02785962. Google Scholar

[15]

S. Bhattacharya and T. Ward, Finite entropy characterizes topological rigidity on connected groups, Ergodic Th. & Dynam. Syst., 25 (2005), 365-373. doi: 10.1017/S0143385704000501. Google Scholar

[16]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropy and trivial centralizers, Studia Math., 103 (1992), 133-142. doi: 10.4064/sm-103-2-133-142. Google Scholar

[17]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers, J. Europ. Math. Soc., 15 (2013), 1343-1374. doi: 10.4171/JEMS/394. Google Scholar

[18]

E. M. Coven, Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitsth. verw. Geb., 20 (1971/1972), 129-133. doi: 10.1007/BF00536290. Google Scholar

[19]

E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory, 7 (1973), 138-153. doi: 10.1007/BF01762232. Google Scholar

[20]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes Discrete Analysis 2016 (2016), 28pp. doi: 10.19086/da.611. Google Scholar

[21]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 2 (2016), 613-621. doi: 10.1090/proc12719. Google Scholar

[22]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity Forum Math. Sigma 3 (2015), e5, 27pp. doi: 10.1017/fms.2015.3. Google Scholar

[23]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495. doi: 10.3934/jmd.2016.10.483. Google Scholar

[24]

M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitsth. verw. Geb., 41 (1978), 221-239. doi: 10.1007/BF00534241. Google Scholar

[25]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity shifts, Ergodic Th. & Dynam. Syst., 36 (2016), 64-95. doi: 10.1017/etds.2015.70. Google Scholar

[26]

X. Droubay and G. Pirillo, Palindromes and Sturmian words, Theor. Comput. Sci., 223 (1999), 73-85. doi: 10.1016/S0304-3975(97)00188-6. Google Scholar

[27]

F. Durand, A characterization of substitutive sequences using return words, Discr. Math., 179 (1998), 89-101. doi: 10.1016/S0012-365X(97)00029-0. Google Scholar

[28]

M. Einsiedler and T. Ward, Ergodic Theory with a View towards Number Theory Springer, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[29]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathcal{B}$-free integers, Int. Math. Res. Notices, 2015 (2015), 7258-7286. doi: 10.1093/imrn/rnu164. Google Scholar

[30]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320. doi: 10.1007/BF02810689. Google Scholar

[31]

M. Golubitsky and I. Stewart, The Symmetry Perspective — From Equilibrium to Chaos in Phase Space and Physical Space, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8167-8. Google Scholar

[32]

G. R. Goodson, Inverse conjugacies and reversing symmetry groups, Amer. Math. Monthly, 106 (1999), 19-26. doi: 10.2307/2589582. Google Scholar

[33]

G. GoodsonA. del JuncoM. Lemańczyk and D. Rudolph, Ergodic transformation conjugate to their inverses by involutions, Ergodic Th. & Dynam. Syst., 16 (1996), 97-124. doi: 10.1017/S0143385700008737. Google Scholar

[34]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems, Math. Systems Th., 3 (1969), 320-375. doi: 10.1007/BF01691062. Google Scholar

[35]

M. Hochman, Genericity in topological dynamics, Ergodic Th. & Dynam. Syst., 28 (2008), 125-165. doi: 10.1017/S0143385707000521. Google Scholar

[36]

A. HofO. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys., 174 (1995), 149-159. doi: 10.1007/BF02099468. Google Scholar

[37]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787. doi: 10.4007/annals.2013.178.2.7. Google Scholar

[38]

M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitsth. verw. Geb., 10 (1968), 335-353. doi: 10.1007/BF00531855. Google Scholar

[39]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301. doi: 10.2140/pjm.2003.209.289. Google Scholar

[40]

B. P. Kitchens, Symbolic Dynamics Springer, Berlin, 1998. doi: 10.1007/978-3-642-58822-8. Google Scholar

[41]

B. Kitchens, Dynamics of Zd actions on Markov subgroups, in Topics in Symbolic Dynamics and Applications, F. Blanchard, A. Maas and A. Nogueira (eds. ), Cambridge University Press, Cambridge, (2000), pp. 89–122. Google Scholar

[42]

B. Kitchens and K. Schmidt, Isomorphism rigidity of irreducible algebraic $\mathbb{Z}^{d}$-actions, Invent. Math., 142 (2000), 559-577. doi: 10.1007/PL00005793. Google Scholar

[43]

J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A: Math. Gen., 25 (1992), 925-937. doi: 10.1088/0305-4470/25/4/028. Google Scholar

[44]

J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1-39. doi: 10.1016/S0167-2789(97)00199-1. Google Scholar

[45]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563. Google Scholar

[46]

J. LeeK. K. Park and S. Shin, Reversible topological Markov shifts, Ergodic Th. & Dynam. Syst., 26 (2006), 267-280. doi: 10.1017/S0143385705000556. Google Scholar

[47]

D. A. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302. Google Scholar

[48]

M. K. Mentzen, Automorphisms of subshifts defined by $\mathcal{B}$-free sets of integers, Coll. Math., 147 (2017), 87-94. doi: 10.4064/cm6927-5-2016. Google Scholar

[49]

M. Morse and G. A. Hedlund, Symbolic dynamics Ⅱ. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42. doi: 10.2307/2371431. Google Scholar

[50]

A. G. O'Farrel and I. Short, Reversibility in Dynamics and Group Theory Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781139998321. Google Scholar

[51]

J. Olli, Endomorphisms of Sturmian systems and the discrete chair substitution tiling system, Discr. Cont. Dynam. Syst. A, 33 (2013), 4173-4186. doi: 10.3934/dcds.2013.33.4173. Google Scholar

[52]

K. Petersen, Ergodic Theory Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511608728. Google Scholar

[53]

M. Queffélec, Substitution Dynamical Systems — Spectral Analysis, LNM 1294, 2nd ed., Springer, Berlin, 2010.Google Scholar

[54]

J. A. G. Roberts and M. Baake, Trace maps as 3D reversible dynamical systems with an invariant, J. Stat. Phys., 74 (1994), 829-888. doi: 10.1007/BF02188581. Google Scholar

[55]

E. A. Robinson, On the table and the chair, Indag. Math., 10 (1999), 581-599. doi: 10.1016/S0019-3577(00)87911-2. Google Scholar

[56]

K. Schmidt, Dynamical Systems of Algebraic Origin Birkhäuser, Basel, 1995. Google Scholar

[57]

R. L. E. Schwarzenberger, $N$-dimensional Crystallography Pitman, San Francisco, 1980. Google Scholar

[58]

M. B. Sevryuk, Reversible Systems LNM 1211, Springer, Berlin, 1986. doi: 10.1007/BFb0075877. Google Scholar

[59]

B. Tan, Mirror substitutions and palindromic sequences, Theor. Comput. Sci., 389 (2007), 118-124. doi: 10.1016/j.tcs.2007.08.003. Google Scholar

[60]

Ya. Vorobets, On a substitution shift related to the Grigorchuk group, Proc. Steklov Inst. Math., 271 (2010), 306-321. doi: 10.1134/S0081543810040218. Google Scholar

show all references

References:
[1]

J. -P. Allouche and J. Shallit, Automatic Sequences Cambridge University Press, Cambridge, 2003. doi: 10.1017/CBO9780511546563. Google Scholar

[2]

L. Arenas-CarmonaD. Berend and V. Bergelson, Ledrappier's system is almost mixing of all orders, Ergodic Th. & Dynam. Syst., 28 (2008), 339-365. doi: 10.1017/S0143385707000727. Google Scholar

[3]

J. Auslander, Endomorphisms of minimal sets, Duke Math. J., 30 (1963), 605-614. doi: 10.1215/S0012-7094-63-03065-5. Google Scholar

[4]

M. Baake, Structure and representations of the hyperoctahedral group, J. Math. Phys., 25 (1984), 3171-3182. doi: 10.1063/1.526087. Google Scholar

[5]

M. BaakeF. Gähler and U. Grimm, Spectral and topological properties of a family of generalised Thue–Morse sequences, J. Math. Phys., 53 (2012), 032701, 24pp. doi: 10.1063/1.3688337. Google Scholar

[6]

M. Baake and U. Grimm, Aperiodic Order. Vol. 1: A Mathematical Invitation Cambridge Univ. Press, Cambridge, 2013. doi: 10.1017/CBO9781139025256. Google Scholar

[7]

M. BaakeJ. Hermisson and P. A. B. Pleasants, The torus parametrization of quasiperiodic LI classes, J. Phys. A: Math. Gen., 30 (1997), 3029-3056. doi: 10.1088/0305-4470/30/9/016. Google Scholar

[8]

M. BaakeR. V. Moody and P. A. B. Pleasants, Diffraction from visible lattice points and $k$-th power free integers, Discr. Math., 221 (2000), 3-42. doi: 10.1016/S0012-365X(99)00384-2. Google Scholar

[9]

M. Baake and J. A. G. Roberts, Symmetries and reversing symmetries of polynomial automorphisms of the plane, Nonlinearity, 18 (2005), 791-816. doi: 10.1088/0951-7715/18/2/017. Google Scholar

[10]

M. Baake and J. A. G. Roberts, Symmetries and reversing symmetries of toral automorphisms, Nonlinearity, 14 (2001), R1-R24. doi: 10.1088/0951-7715/14/4/201. Google Scholar

[11]

M. Baake and J. A. G. Roberts. The structure of reversing symmetry groups, The structure of reversing symmetry groups, Bull. Austral. Math. Soc., 73 (2006), 445-459. doi: 10.1017/S0004972700035450. Google Scholar

[12]

M. Baake and T. Ward, Planar dynamical systems with pure Lebesgue diffraction spectrum, J. Stat. Phys., 140 (2010), 90-102. doi: 10.1007/s10955-010-9984-x. Google Scholar

[13]

J. Berstel, L. Boasson, O. Carton and I. Fagnot, Infinite words without palindrome, preprint, arXiv: 0903.2382.Google Scholar

[14]

S. Bhattacharya and K. Schmidt, Homoclinic points and isomorphism rigidity of algebraic $\mathbb{Z}^{d}$-actions on zero-dimensional compact Abelian groups, Israel J. Math., 137 (2003), 189-209. doi: 10.1007/BF02785962. Google Scholar

[15]

S. Bhattacharya and T. Ward, Finite entropy characterizes topological rigidity on connected groups, Ergodic Th. & Dynam. Syst., 25 (2005), 365-373. doi: 10.1017/S0143385704000501. Google Scholar

[16]

W. Bulatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropy and trivial centralizers, Studia Math., 103 (1992), 133-142. doi: 10.4064/sm-103-2-133-142. Google Scholar

[17]

F. Cellarosi and Ya. G. Sinai, Ergodic properties of square-free numbers, J. Europ. Math. Soc., 15 (2013), 1343-1374. doi: 10.4171/JEMS/394. Google Scholar

[18]

E. M. Coven, Endomorphisms of substitution minimal sets, Z. Wahrscheinlichkeitsth. verw. Geb., 20 (1971/1972), 129-133. doi: 10.1007/BF00536290. Google Scholar

[19]

E. M. Coven and G. A. Hedlund, Sequences with minimal block growth, Math. Systems Theory, 7 (1973), 138-153. doi: 10.1007/BF01762232. Google Scholar

[20]

E. M. Coven, A. Quas and R. Yassawi, Computing automorphism groups of shifts using atypical equivalence classes Discrete Analysis 2016 (2016), 28pp. doi: 10.19086/da.611. Google Scholar

[21]

V. Cyr and B. Kra, The automorphism group of a shift of subquadratic growth, Proc. Amer. Math. Soc., 2 (2016), 613-621. doi: 10.1090/proc12719. Google Scholar

[22]

V. Cyr and B. Kra, The automorphism group of a shift of linear growth: Beyond transitivity Forum Math. Sigma 3 (2015), e5, 27pp. doi: 10.1017/fms.2015.3. Google Scholar

[23]

V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, J. Mod. Dyn., 10 (2016), 483-495. doi: 10.3934/jmd.2016.10.483. Google Scholar

[24]

M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length, Z. Wahrscheinlichkeitsth. verw. Geb., 41 (1978), 221-239. doi: 10.1007/BF00534241. Google Scholar

[25]

S. DonosoF. DurandA. Maass and S. Petite, On automorphism groups of low complexity shifts, Ergodic Th. & Dynam. Syst., 36 (2016), 64-95. doi: 10.1017/etds.2015.70. Google Scholar

[26]

X. Droubay and G. Pirillo, Palindromes and Sturmian words, Theor. Comput. Sci., 223 (1999), 73-85. doi: 10.1016/S0304-3975(97)00188-6. Google Scholar

[27]

F. Durand, A characterization of substitutive sequences using return words, Discr. Math., 179 (1998), 89-101. doi: 10.1016/S0012-365X(97)00029-0. Google Scholar

[28]

M. Einsiedler and T. Ward, Ergodic Theory with a View towards Number Theory Springer, London, 2011. doi: 10.1007/978-0-85729-021-2. Google Scholar

[29]

E. H. El AbdalaouiM. Lemańczyk and T. de la Rue, A dynamical point of view on the set of $\mathcal{B}$-free integers, Int. Math. Res. Notices, 2015 (2015), 7258-7286. doi: 10.1093/imrn/rnu164. Google Scholar

[30]

T. GiordanoI. F. Putnam and C. Skau, Full groups of Cantor minimal systems, Israel J. Math., 111 (1999), 285-320. doi: 10.1007/BF02810689. Google Scholar

[31]

M. Golubitsky and I. Stewart, The Symmetry Perspective — From Equilibrium to Chaos in Phase Space and Physical Space, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8167-8. Google Scholar

[32]

G. R. Goodson, Inverse conjugacies and reversing symmetry groups, Amer. Math. Monthly, 106 (1999), 19-26. doi: 10.2307/2589582. Google Scholar

[33]

G. GoodsonA. del JuncoM. Lemańczyk and D. Rudolph, Ergodic transformation conjugate to their inverses by involutions, Ergodic Th. & Dynam. Syst., 16 (1996), 97-124. doi: 10.1017/S0143385700008737. Google Scholar

[34]

G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical systems, Math. Systems Th., 3 (1969), 320-375. doi: 10.1007/BF01691062. Google Scholar

[35]

M. Hochman, Genericity in topological dynamics, Ergodic Th. & Dynam. Syst., 28 (2008), 125-165. doi: 10.1017/S0143385707000521. Google Scholar

[36]

A. HofO. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys., 174 (1995), 149-159. doi: 10.1007/BF02099468. Google Scholar

[37]

K. Juschenko and N. Monod, Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., 178 (2013), 775-787. doi: 10.4007/annals.2013.178.2.7. Google Scholar

[38]

M. Keane, Generalized Morse sequences, Z. Wahrscheinlichkeitsth. verw. Geb., 10 (1968), 335-353. doi: 10.1007/BF00531855. Google Scholar

[39]

Y.-O. KimJ. Lee and K. K. Park, A zeta function for flip systems, Pacific J. Math., 209 (2003), 289-301. doi: 10.2140/pjm.2003.209.289. Google Scholar

[40]

B. P. Kitchens, Symbolic Dynamics Springer, Berlin, 1998. doi: 10.1007/978-3-642-58822-8. Google Scholar

[41]

B. Kitchens, Dynamics of Zd actions on Markov subgroups, in Topics in Symbolic Dynamics and Applications, F. Blanchard, A. Maas and A. Nogueira (eds. ), Cambridge University Press, Cambridge, (2000), pp. 89–122. Google Scholar

[42]

B. Kitchens and K. Schmidt, Isomorphism rigidity of irreducible algebraic $\mathbb{Z}^{d}$-actions, Invent. Math., 142 (2000), 559-577. doi: 10.1007/PL00005793. Google Scholar

[43]

J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A: Math. Gen., 25 (1992), 925-937. doi: 10.1088/0305-4470/25/4/028. Google Scholar

[44]

J. S. W. Lamb and J. A. G. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1-39. doi: 10.1016/S0167-2789(97)00199-1. Google Scholar

[45]

F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978), A561-A563. Google Scholar

[46]

J. LeeK. K. Park and S. Shin, Reversible topological Markov shifts, Ergodic Th. & Dynam. Syst., 26 (2006), 267-280. doi: 10.1017/S0143385705000556. Google Scholar

[47]

D. A. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511626302. Google Scholar

[48]

M. K. Mentzen, Automorphisms of subshifts defined by $\mathcal{B}$-free sets of integers, Coll. Math., 147 (2017), 87-94. doi: 10.4064/cm6927-5-2016. Google Scholar

[49]

M. Morse and G. A. Hedlund, Symbolic dynamics Ⅱ. Sturmian trajectories, Amer. J. Math., 62 (1940), 1-42. doi: 10.2307/2371431. Google Scholar

[50]

A. G. O'Farrel and I. Short, Reversibility in Dynamics and Group Theory Cambridge University Press, Cambridge, 2015. doi: 10.1017/CBO9781139998321. Google Scholar

[51]

J. Olli, Endomorphisms of Sturmian systems and the discrete chair substitution tiling system, Discr. Cont. Dynam. Syst. A, 33 (2013), 4173-4186. doi: 10.3934/dcds.2013.33.4173. Google Scholar

[52]

K. Petersen, Ergodic Theory Cambridge University Press, Cambridge, 1983. doi: 10.1017/CBO9780511608728. Google Scholar

[53]

M. Queffélec, Substitution Dynamical Systems — Spectral Analysis, LNM 1294, 2nd ed., Springer, Berlin, 2010.Google Scholar

[54]

J. A. G. Roberts and M. Baake, Trace maps as 3D reversible dynamical systems with an invariant, J. Stat. Phys., 74 (1994), 829-888. doi: 10.1007/BF02188581. Google Scholar

[55]

E. A. Robinson, On the table and the chair, Indag. Math., 10 (1999), 581-599. doi: 10.1016/S0019-3577(00)87911-2. Google Scholar

[56]

K. Schmidt, Dynamical Systems of Algebraic Origin Birkhäuser, Basel, 1995. Google Scholar

[57]

R. L. E. Schwarzenberger, $N$-dimensional Crystallography Pitman, San Francisco, 1980. Google Scholar

[58]

M. B. Sevryuk, Reversible Systems LNM 1211, Springer, Berlin, 1986. doi: 10.1007/BFb0075877. Google Scholar

[59]

B. Tan, Mirror substitutions and palindromic sequences, Theor. Comput. Sci., 389 (2007), 118-124. doi: 10.1016/j.tcs.2007.08.003. Google Scholar

[60]

Ya. Vorobets, On a substitution shift related to the Grigorchuk group, Proc. Steklov Inst. Math., 271 (2010), 306-321. doi: 10.1134/S0081543810040218. Google Scholar

Figure 1.  The chair inflation rule (upper left panel; rotated tiles are inflated to rotated patches), a legal patch with full $D_{4}$ symmetry (lower left) and a level-$3$ inflation patch generated from this legal seed (shaded; right panel). Note that this patch still has the full $D_{4}$ point symmetry (with respect to its centre), as will the infinite inflation tiling fixed point emerging from it
Figure 2.  The chair tiling seed of Figure 1, now turned into a patch of its symbolic representation via the recoding of Eq. (15). The relation between the purely geometric point symmetries in the tiling picture and the corresponding combinations of point symmetries and LEMs can be seen from this seed
Figure 3.  Illustration of the central configurational patch for Ledrappier's shift condition, which explains the relevance of the triangular lattice. Eq. (16) must be satisfied for the three vertices of all elementary $L$-triangles (shaded). The overall pattern of these triangles is preserved by all (extended) symmetries. The group $D^{}_{3}$ from Theorem 7 can now be viewed as the colour-preserving symmetry group of the 'distorted' hexagon as indicated around the origin
[1]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[2]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[3]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[4]

James Kingsbery, Alex Levin, Anatoly Preygel, Cesar E. Silva. Dynamics of the $p$-adic shift and applications. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 209-218. doi: 10.3934/dcds.2011.30.209

[5]

Luis Barreira, Claudia Valls. Reversibility and equivariance in center manifolds of nonautonomous dynamics. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 677-699. doi: 10.3934/dcds.2007.18.677

[6]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[7]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[8]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[9]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[10]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[11]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[12]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[13]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[14]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

[15]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[16]

Van Cyr, Bryna Kra. The automorphism group of a minimal shift of stretched exponential growth. Journal of Modern Dynamics, 2016, 10: 483-495. doi: 10.3934/jmd.2016.10.483

[17]

Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855

[18]

S. Eigen, V. S. Prasad. Tiling Abelian groups with a single tile. Discrete & Continuous Dynamical Systems - A, 2006, 16 (2) : 361-365. doi: 10.3934/dcds.2006.16.361

[19]

Anke D. Pohl. Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2173-2241. doi: 10.3934/dcds.2014.34.2173

[20]

Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (30)
  • HTML views (61)
  • Cited by (0)

Other articles
by authors

[Back to Top]