The aim of this work is to study propagation phenomena for monotone and nonmonotone cellular neural networks with the asymmetric templates and distributed delays. More precisely, for the monotone case, we establish the existence of the leftward ($c_{-}^*$) and rightward ($c_{+}^*$) spreading speeds for CNNs by appealing to the theory developed in [
Citation: |
D. Aronson
and H. Weinberger
, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, J. A. Goldstein, ed., Lecture Notes in Mathematics Ser. 446, Springer-Verlag, Berlin, (1975)
, 5-49.
![]() ![]() |
|
D. Aronson
and H. Weinberger
, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978)
, 33-76.
doi: 10.1016/0001-8708(78)90130-5.![]() ![]() ![]() |
|
S.-N. Chow
and J. Mallet-Paret
, Pattern formation and spatial chaos in lattice dynamical systems-part Ⅰ, IEEE Trans. Circuits and Systems, 42 (1995)
, 746,752-751,756.
doi: 10.1109/81.473583.![]() ![]() ![]() |
|
S.-N. Chow
, J. Mallet-Paret
and W. Shen
, Travelling waves in lattice dynamical systems, J. Differential Equations, 149 (1998)
, 248-291.
doi: 10.1006/jdeq.1998.3478.![]() ![]() ![]() |
|
S. N. Chow
and W. Shen
, Stability and bifurcation of traveling wave solutions in coupled map lattices, J. Dynam. Systems Appl., 4 (1995)
, 1-25.
![]() ![]() |
|
L. Chua,
CNN: A Paradigm for Complexity World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.
![]() |
|
L. Chua
and L. Yang
, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988)
, 1257-1272.
doi: 10.1109/31.7600.![]() ![]() ![]() |
|
L. Chua
and L. Yang
, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988)
, 1273-1290.
doi: 10.1109/31.7601.![]() ![]() ![]() |
|
P. P. Civalleri
, M. Gill
and L. Pandolfi
, On stability of cellular neural networks with delay, IEEE Trans, CAS, 40 (1993)
, 157-165.
doi: 10.1109/81.222796.![]() ![]() ![]() |
|
J. Fang
and X.-Q. Zhao
, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014)
, 3678-3704.
doi: 10.1137/140953939.![]() ![]() ![]() |
|
J. Fang
and X. -Q. Zhao
, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010)
, 2199-2226.
doi: 10.1016/j.jde.2010.01.009.![]() ![]() ![]() |
|
J. Fang
, J. Wei
and X.-Q. Zhao
, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010)
, 1919-1934.
doi: 10.1098/rspa.2009.0577.![]() ![]() ![]() |
|
D. Golomb
, X. J. Wang
and J. Rinzel
, Propagation of spindle waves in a thalamic slice model, J. Neurophysiol, 75 (1996)
, 750-769.
![]() |
|
D. Golomb
and Y. Amitai
, Propagating neuronal discharges in neocortical slices: Computational and experimental study, J. Neurophysiol, 78 (1997)
, 1199-1211.
![]() |
|
J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems,
Biol. Cybern. 52 (1985), 141--152,
![]() ![]() |
|
J. J. Hopfield
and D. W. Tank
, Computing with neural circuits: A model, Science (USA), 233 (1986)
, 625-633.
doi: 10.1126/science.3755256.![]() ![]() |
|
C. Hsu
, C. Li
and S. Yang
, Diversity of traveling wave solutions in delayed cellular neural networks, Internat. J. Bifur. Chaos, 18 (2008)
, 3515-3550.
doi: 10.1142/S0218127408022561.![]() ![]() ![]() |
|
C. Hsu
, S. Lin
and W. Shen
, Traveling waves in cellular neural networks, Internat. J. Bifur. Chaos, 9 (1999)
, 1307-1319.
doi: 10.1142/S0218127499000912.![]() ![]() ![]() |
|
C. Hsu
and S. Lin
, Existence and multiplicity of traveling waves in a lattice dynamical systems, J. Differential Equations, 164 (2000)
, 431-450.
doi: 10.1006/jdeq.2000.3770.![]() ![]() ![]() |
|
C. Hsu
and S. Yang
, Structure of a class of traveling waves in delayed cellular neural networks, Discrete Contin. Dynam. Systems, 13 (2005)
, 339-359.
doi: 10.3934/dcds.2005.13.339.![]() ![]() ![]() |
|
C. Hsu
and S. Yang
, Traveling wave solutions in cellular neural networks with multiple time delays, Discrete Contin. Dynam. Systems Suppl., (2005)
, 410-419.
![]() ![]() |
|
S.-B. Hsu
and X.-Q. Zhao
, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008)
, 776-789.
doi: 10.1137/070703016.![]() ![]() ![]() |
|
J. Juang
and S. S. Lin
, Cellular neural networks: Mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000)
, 891-915.
doi: 10.1137/S0036139997323607.![]() ![]() ![]() |
|
J. P. Keener
, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987)
, 556-572.
doi: 10.1137/0147038.![]() ![]() ![]() |
|
B. Li
, H. Weinberger
and M. Lewis
, Spreading speeds as slowest wave speed for cooperative systems, Math. Biosci., 196 (2005)
, 82-98.
doi: 10.1016/j.mbs.2005.03.008.![]() ![]() ![]() |
|
X. Liang
and X.-Q. Zhao
, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007)
, 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
|
X. Liang
and X.-Q. Zhao
, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010)
, 857-903.
doi: 10.1016/j.jfa.2010.04.018.![]() ![]() ![]() |
|
X. Liang
, Y. Yi
and X.-Q. Zhao
, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006)
, 57-77.
doi: 10.1016/j.jde.2006.04.010.![]() ![]() ![]() |
|
X. Liu
, P. Weng
and Z. Xu
, Existence of traveling wave solutions in nonlinear delayed cellular neural networks, Nonlinear Anal. RWA, 10 (2009)
, 277-286.
doi: 10.1016/j.nonrwa.2007.09.010.![]() ![]() ![]() |
|
Y. Lou
and X.-Q. Zhao
, The periodic Ross-Macdonald model with diffusion and advection, Applicable Analysis, 89 (2010)
, 1067-1089.
doi: 10.1080/00036810903437804.![]() ![]() ![]() |
|
R. Lui
, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989)
, 269-295.
doi: 10.1016/0025-5564(89)90026-6.![]() ![]() ![]() |
|
J. Mallet-Paret
and S.-N. Chow
, Pattern formation and spatial chaos in lattice dynamical systems, Ⅱ, IEEE Trans. Circuits and Systems, 42 (1995)
, 752-756.
doi: 10.1109/81.473583.![]() ![]() ![]() |
|
J. Mallet-Paret
, The global structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999)
, 49-127.
doi: 10.1023/A:1021841618074.![]() ![]() ![]() |
|
V. Ptrez-Muiiuzuri
, V. Perez-Villar
and L. O. Chua
, Propagation failure in linear arrays of Chua's circuits, Int. J. Bifurc. and Chaos, 2 (1996)
, 403-406.
doi: 10.1142/S0218127492000380.![]() ![]() ![]() |
|
T. Roska
and L. Chua
, Cellular neural networks with nonlinear and delay-time template elements and nonuniform grids, Int. J. Circuit Theory Appl., 20 (1992)
, 469-481.
![]() |
|
A. Slavova,
Cellular Neural Networks: Dynamics and Modelling Kluwer Academic Publishers, 2003.
doi: 10.1007/978-94-017-0261-4.![]() ![]() ![]() |
|
H. Smith,
Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Mathematical Surveys and Monographs, Vol. 41, American Mathematical Society, Providence, RI, 1995.
![]() ![]() |
|
H. Thieme
, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979)
, 173-187.
doi: 10.1007/BF00279720.![]() ![]() ![]() |
|
H. Thieme
and X.-Q. Zhao
, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003)
, 430-470.
doi: 10.1016/S0022-0396(03)00175-X.![]() ![]() ![]() |
|
H. Weinberger
, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982)
, 353-396.
doi: 10.1137/0513028.![]() ![]() ![]() |
|
P. Weng
and J. Wu
, Deformation of traveling waves in delayed cellular neural networks, Internat. J. Bifur. Chaos, 13 (2003)
, 797-813.
doi: 10.1142/S0218127403006947.![]() ![]() ![]() |
|
P. Weng
and X.-Q. Zhao
, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006)
, 270-296.
doi: 10.1016/j.jde.2006.01.020.![]() ![]() ![]() |
|
S. Wu
and C. Hsu
, Entire solutions of nonlinear cellular neural networks with distributed time delays, Nonlinearity, 25 (2012)
, 2785-2801.
doi: 10.1088/0951-7715/25/9/2785.![]() ![]() ![]() |
|
S. Wu
and C. Hsu
, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Royal Soc. Edinb., 144 (2014)
, 1085-1112.
doi: 10.1017/S0308210512001412.![]() ![]() ![]() |
|
Z. Yu
and M. Mei
, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Equations, 260 (2016)
, 241-267.
doi: 10.1016/j.jde.2015.08.037.![]() ![]() ![]() |
|
Z. Yu
, R. Yuan
, C.-H. Hsu
and Q. Jiang
, Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differential Equations, 251 (2011)
, 630-650.
doi: 10.1016/j.jde.2011.05.008.![]() ![]() ![]() |
|
Z. Yu, R. Yuan, C. -H. Hsu and M. Peng, Traveling waves for delayed cellular neural networks with nonmonotonic output functions Abstract and Applied Analysis 2014 (2014), ID 490161, 11pp.
doi: 10.1155/2014/490161.![]() ![]() ![]() |
|
B. Zinner
, Existence of travelling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992)
, 1-27.
doi: 10.1016/0022-0396(92)90142-A.![]() ![]() ![]() |
The spread of wn, and the left plot shows 3-D graph of wn, and the right one indicates that projection of wn is on the plane (n; t)-plane.
The rightward traveling waves observed for wn(t) in different views.
The leftward traveling waves observed for wn(t) in different views.
The leftward traveling waves observed for