\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Propagation phenomena for CNNs with asymmetric templates and distributed delays

  • * Corresponding author: Zhixian Yu

    * Corresponding author: Zhixian Yu 
Abstract Full Text(HTML) Figure(4) Related Papers Cited by
  • The aim of this work is to study propagation phenomena for monotone and nonmonotone cellular neural networks with the asymmetric templates and distributed delays. More precisely, for the monotone case, we establish the existence of the leftward ($c_{-}^*$) and rightward ($c_{+}^*$) spreading speeds for CNNs by appealing to the theory developed in [26,27], and $c_{-}^*+c_{+}^*>0$. Especially, if cells possess the symmetric templates and the same delayed interactions, then $c_{-}^*=c_{+}^*>0$. Moreover, if the effect of the self-feedback interaction $α f'(0)$ is not less than 1, then both $c_{-}^*>0$ and $c_{+}^*>0$. For the non-monotone case, the leftward and rightward spreading speeds are investigated by using the results of the spreading speed for the monotone case and squeezing the given output function between two appropriate nondecreasing functions. It turns out that the leftward and rightward spreading speeds are linearly determinate in these two cases. We further obtain the existence and nonexistence of travelling wave solutions under the weaker conditions than those in [46, 47] and show that the spreading speed coincides with the minimal wave speed.

    Mathematics Subject Classification: Primary: 35C07; Secondary: 92D25, 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The spread of wn, and the left plot shows 3-D graph of wn, and the right one indicates that projection of wn is on the plane (n; t)-plane.

    Figure 2.  The rightward traveling waves observed for wn(t) in different views.

    Figure 3.  The leftward traveling waves observed for wn(t) in different views.

    Figure 4.  The leftward traveling waves observed for $w_n(t)$ in different views.

  •   D. Aronson  and  H. Weinberger , Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, J. A. Goldstein, ed., Lecture Notes in Mathematics Ser. 446, Springer-Verlag, Berlin, (1975) , 5-49. 
      D. Aronson  and  H. Weinberger , Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978) , 33-76.  doi: 10.1016/0001-8708(78)90130-5.
      S.-N. Chow  and  J. Mallet-Paret , Pattern formation and spatial chaos in lattice dynamical systems-part Ⅰ, IEEE Trans. Circuits and Systems, 42 (1995) , 746,752-751,756.  doi: 10.1109/81.473583.
      S.-N. Chow , J. Mallet-Paret  and  W. Shen , Travelling waves in lattice dynamical systems, J. Differential Equations, 149 (1998) , 248-291.  doi: 10.1006/jdeq.1998.3478.
      S. N. Chow  and  W. Shen , Stability and bifurcation of traveling wave solutions in coupled map lattices, J. Dynam. Systems Appl., 4 (1995) , 1-25. 
      L. Chua, CNN: A Paradigm for Complexity World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.
      L. Chua  and  L. Yang , Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988) , 1257-1272.  doi: 10.1109/31.7600.
      L. Chua  and  L. Yang , Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988) , 1273-1290.  doi: 10.1109/31.7601.
      P. P. Civalleri , M. Gill  and  L. Pandolfi , On stability of cellular neural networks with delay, IEEE Trans, CAS, 40 (1993) , 157-165.  doi: 10.1109/81.222796.
      J. Fang  and  X.-Q. Zhao , Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014) , 3678-3704.  doi: 10.1137/140953939.
      J. Fang  and  X. -Q. Zhao , Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010) , 2199-2226.  doi: 10.1016/j.jde.2010.01.009.
      J. Fang , J. Wei  and  X.-Q. Zhao , Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010) , 1919-1934.  doi: 10.1098/rspa.2009.0577.
      D. Golomb , X. J. Wang  and  J. Rinzel , Propagation of spindle waves in a thalamic slice model, J. Neurophysiol, 75 (1996) , 750-769. 
      D. Golomb  and  Y. Amitai , Propagating neuronal discharges in neocortical slices: Computational and experimental study, J. Neurophysiol, 78 (1997) , 1199-1211. 
      J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybern. 52 (1985), 141--152,
      J. J. Hopfield  and  D. W. Tank , Computing with neural circuits: A model, Science (USA), 233 (1986) , 625-633.  doi: 10.1126/science.3755256.
      C. Hsu , C. Li  and  S. Yang , Diversity of traveling wave solutions in delayed cellular neural networks, Internat. J. Bifur. Chaos, 18 (2008) , 3515-3550.  doi: 10.1142/S0218127408022561.
      C. Hsu , S. Lin  and  W. Shen , Traveling waves in cellular neural networks, Internat. J. Bifur. Chaos, 9 (1999) , 1307-1319.  doi: 10.1142/S0218127499000912.
      C. Hsu  and  S. Lin , Existence and multiplicity of traveling waves in a lattice dynamical systems, J. Differential Equations, 164 (2000) , 431-450.  doi: 10.1006/jdeq.2000.3770.
      C. Hsu  and  S. Yang , Structure of a class of traveling waves in delayed cellular neural networks, Discrete Contin. Dynam. Systems, 13 (2005) , 339-359.  doi: 10.3934/dcds.2005.13.339.
      C. Hsu  and  S. Yang , Traveling wave solutions in cellular neural networks with multiple time delays, Discrete Contin. Dynam. Systems Suppl., (2005) , 410-419. 
      S.-B. Hsu  and  X.-Q. Zhao , Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008) , 776-789.  doi: 10.1137/070703016.
      J. Juang  and  S. S. Lin , Cellular neural networks: Mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000) , 891-915.  doi: 10.1137/S0036139997323607.
      J. P. Keener , Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987) , 556-572.  doi: 10.1137/0147038.
      B. Li , H. Weinberger  and  M. Lewis , Spreading speeds as slowest wave speed for cooperative systems, Math. Biosci., 196 (2005) , 82-98.  doi: 10.1016/j.mbs.2005.03.008.
      X. Liang  and  X.-Q. Zhao , Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007) , 1-40.  doi: 10.1002/cpa.20154.
      X. Liang  and  X.-Q. Zhao , Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010) , 857-903.  doi: 10.1016/j.jfa.2010.04.018.
      X. Liang , Y. Yi  and  X.-Q. Zhao , Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006) , 57-77.  doi: 10.1016/j.jde.2006.04.010.
      X. Liu , P. Weng  and  Z. Xu , Existence of traveling wave solutions in nonlinear delayed cellular neural networks, Nonlinear Anal. RWA, 10 (2009) , 277-286.  doi: 10.1016/j.nonrwa.2007.09.010.
      Y. Lou  and  X.-Q. Zhao , The periodic Ross-Macdonald model with diffusion and advection, Applicable Analysis, 89 (2010) , 1067-1089.  doi: 10.1080/00036810903437804.
      R. Lui , Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989) , 269-295.  doi: 10.1016/0025-5564(89)90026-6.
      J. Mallet-Paret  and  S.-N. Chow , Pattern formation and spatial chaos in lattice dynamical systems, Ⅱ, IEEE Trans. Circuits and Systems, 42 (1995) , 752-756.  doi: 10.1109/81.473583.
      J. Mallet-Paret , The global structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999) , 49-127.  doi: 10.1023/A:1021841618074.
      V. Ptrez-Muiiuzuri , V. Perez-Villar  and  L. O. Chua , Propagation failure in linear arrays of Chua's circuits, Int. J. Bifurc. and Chaos, 2 (1996) , 403-406.  doi: 10.1142/S0218127492000380.
      T. Roska  and  L. Chua , Cellular neural networks with nonlinear and delay-time template elements and nonuniform grids, Int. J. Circuit Theory Appl., 20 (1992) , 469-481. 
      A. Slavova, Cellular Neural Networks: Dynamics and Modelling Kluwer Academic Publishers, 2003. doi: 10.1007/978-94-017-0261-4.
      H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Mathematical Surveys and Monographs, Vol. 41, American Mathematical Society, Providence, RI, 1995.
      H. Thieme , Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979) , 173-187.  doi: 10.1007/BF00279720.
      H. Thieme  and  X.-Q. Zhao , Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003) , 430-470.  doi: 10.1016/S0022-0396(03)00175-X.
      H. Weinberger , Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982) , 353-396.  doi: 10.1137/0513028.
      P. Weng  and  J. Wu , Deformation of traveling waves in delayed cellular neural networks, Internat. J. Bifur. Chaos, 13 (2003) , 797-813.  doi: 10.1142/S0218127403006947.
      P. Weng  and  X.-Q. Zhao , Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006) , 270-296.  doi: 10.1016/j.jde.2006.01.020.
      S. Wu  and  C. Hsu , Entire solutions of nonlinear cellular neural networks with distributed time delays, Nonlinearity, 25 (2012) , 2785-2801.  doi: 10.1088/0951-7715/25/9/2785.
      S. Wu  and  C. Hsu , Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Royal Soc. Edinb., 144 (2014) , 1085-1112.  doi: 10.1017/S0308210512001412.
      Z. Yu  and  M. Mei , Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Equations, 260 (2016) , 241-267.  doi: 10.1016/j.jde.2015.08.037.
      Z. Yu , R. Yuan , C.-H. Hsu  and  Q. Jiang , Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differential Equations, 251 (2011) , 630-650.  doi: 10.1016/j.jde.2011.05.008.
      Z. Yu, R. Yuan, C. -H. Hsu and M. Peng, Traveling waves for delayed cellular neural networks with nonmonotonic output functions Abstract and Applied Analysis 2014 (2014), ID 490161, 11pp. doi: 10.1155/2014/490161.
      B. Zinner , Existence of travelling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992) , 1-27.  doi: 10.1016/0022-0396(92)90142-A.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(520) PDF downloads(226) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return