February  2018, 38(2): 905-939. doi: 10.3934/dcds.2018039

Propagation phenomena for CNNs with asymmetric templates and distributed delays

1. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

* Corresponding author: Zhixian Yu

Received  January 2017 Revised  August 2017 Published  February 2018

The aim of this work is to study propagation phenomena for monotone and nonmonotone cellular neural networks with the asymmetric templates and distributed delays. More precisely, for the monotone case, we establish the existence of the leftward ($c_{-}^*$) and rightward ($c_{+}^*$) spreading speeds for CNNs by appealing to the theory developed in [26,27], and $c_{-}^*+c_{+}^*>0$. Especially, if cells possess the symmetric templates and the same delayed interactions, then $c_{-}^*=c_{+}^*>0$. Moreover, if the effect of the self-feedback interaction $α f'(0)$ is not less than 1, then both $c_{-}^*>0$ and $c_{+}^*>0$. For the non-monotone case, the leftward and rightward spreading speeds are investigated by using the results of the spreading speed for the monotone case and squeezing the given output function between two appropriate nondecreasing functions. It turns out that the leftward and rightward spreading speeds are linearly determinate in these two cases. We further obtain the existence and nonexistence of travelling wave solutions under the weaker conditions than those in [46, 47] and show that the spreading speed coincides with the minimal wave speed.

Citation: Zhixian Yu, Xiao-Qiang Zhao. Propagation phenomena for CNNs with asymmetric templates and distributed delays. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 905-939. doi: 10.3934/dcds.2018039
References:
[1]

D. Aronson and H. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, J. A. Goldstein, ed., Lecture Notes in Mathematics Ser. 446, Springer-Verlag, Berlin, (1975), 5-49. Google Scholar

[2]

D. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems-part Ⅰ, IEEE Trans. Circuits and Systems, 42 (1995), 746,752-751,756. doi: 10.1109/81.473583. Google Scholar

[4]

S.-N. ChowJ. Mallet-Paret and W. Shen, Travelling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248-291. doi: 10.1006/jdeq.1998.3478. Google Scholar

[5]

S. N. Chow and W. Shen, Stability and bifurcation of traveling wave solutions in coupled map lattices, J. Dynam. Systems Appl., 4 (1995), 1-25. Google Scholar

[6]

L. Chua, CNN: A Paradigm for Complexity World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.Google Scholar

[7]

L. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272. doi: 10.1109/31.7600. Google Scholar

[8]

L. Chua and L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601. Google Scholar

[9]

P. P. CivalleriM. Gill and L. Pandolfi, On stability of cellular neural networks with delay, IEEE Trans, CAS, 40 (1993), 157-165. doi: 10.1109/81.222796. Google Scholar

[10]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939. Google Scholar

[11]

J. Fang and X. -Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[12]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934. doi: 10.1098/rspa.2009.0577. Google Scholar

[13]

D. GolombX. J. Wang and J. Rinzel, Propagation of spindle waves in a thalamic slice model, J. Neurophysiol, 75 (1996), 750-769. Google Scholar

[14]

D. Golomb and Y. Amitai, Propagating neuronal discharges in neocortical slices: Computational and experimental study, J. Neurophysiol, 78 (1997), 1199-1211. Google Scholar

[15]

J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybern. 52 (1985), 141--152, Google Scholar

[16]

J. J. Hopfield and D. W. Tank, Computing with neural circuits: A model, Science (USA), 233 (1986), 625-633. doi: 10.1126/science.3755256. Google Scholar

[17]

C. HsuC. Li and S. Yang, Diversity of traveling wave solutions in delayed cellular neural networks, Internat. J. Bifur. Chaos, 18 (2008), 3515-3550. doi: 10.1142/S0218127408022561. Google Scholar

[18]

C. HsuS. Lin and W. Shen, Traveling waves in cellular neural networks, Internat. J. Bifur. Chaos, 9 (1999), 1307-1319. doi: 10.1142/S0218127499000912. Google Scholar

[19]

C. Hsu and S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical systems, J. Differential Equations, 164 (2000), 431-450. doi: 10.1006/jdeq.2000.3770. Google Scholar

[20]

C. Hsu and S. Yang, Structure of a class of traveling waves in delayed cellular neural networks, Discrete Contin. Dynam. Systems, 13 (2005), 339-359. doi: 10.3934/dcds.2005.13.339. Google Scholar

[21]

C. Hsu and S. Yang, Traveling wave solutions in cellular neural networks with multiple time delays, Discrete Contin. Dynam. Systems Suppl., (2005), 410-419. Google Scholar

[22]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[23]

J. Juang and S. S. Lin, Cellular neural networks: Mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000), 891-915. doi: 10.1137/S0036139997323607. Google Scholar

[24]

J. P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038. Google Scholar

[25]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowest wave speed for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[26]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[27]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[28]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77. doi: 10.1016/j.jde.2006.04.010. Google Scholar

[29]

X. LiuP. Weng and Z. Xu, Existence of traveling wave solutions in nonlinear delayed cellular neural networks, Nonlinear Anal. RWA, 10 (2009), 277-286. doi: 10.1016/j.nonrwa.2007.09.010. Google Scholar

[30]

Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection, Applicable Analysis, 89 (2010), 1067-1089. doi: 10.1080/00036810903437804. Google Scholar

[31]

R. Lui, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295. doi: 10.1016/0025-5564(89)90026-6. Google Scholar

[32]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems, Ⅱ, IEEE Trans. Circuits and Systems, 42 (1995), 752-756. doi: 10.1109/81.473583. Google Scholar

[33]

J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127. doi: 10.1023/A:1021841618074. Google Scholar

[34]

V. Ptrez-MuiiuzuriV. Perez-Villar and L. O. Chua, Propagation failure in linear arrays of Chua's circuits, Int. J. Bifurc. and Chaos, 2 (1996), 403-406. doi: 10.1142/S0218127492000380. Google Scholar

[35]

T. Roska and L. Chua, Cellular neural networks with nonlinear and delay-time template elements and nonuniform grids, Int. J. Circuit Theory Appl., 20 (1992), 469-481. Google Scholar

[36]

A. Slavova, Cellular Neural Networks: Dynamics and Modelling Kluwer Academic Publishers, 2003. doi: 10.1007/978-94-017-0261-4. Google Scholar

[37]

H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Mathematical Surveys and Monographs, Vol. 41, American Mathematical Society, Providence, RI, 1995. Google Scholar

[38]

H. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187. doi: 10.1007/BF00279720. Google Scholar

[39]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[40]

H. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[41]

P. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural networks, Internat. J. Bifur. Chaos, 13 (2003), 797-813. doi: 10.1142/S0218127403006947. Google Scholar

[42]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296. doi: 10.1016/j.jde.2006.01.020. Google Scholar

[43]

S. Wu and C. Hsu, Entire solutions of nonlinear cellular neural networks with distributed time delays, Nonlinearity, 25 (2012), 2785-2801. doi: 10.1088/0951-7715/25/9/2785. Google Scholar

[44]

S. Wu and C. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Royal Soc. Edinb., 144 (2014), 1085-1112. doi: 10.1017/S0308210512001412. Google Scholar

[45]

Z. Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Equations, 260 (2016), 241-267. doi: 10.1016/j.jde.2015.08.037. Google Scholar

[46]

Z. YuR. YuanC.-H. Hsu and Q. Jiang, Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differential Equations, 251 (2011), 630-650. doi: 10.1016/j.jde.2011.05.008. Google Scholar

[47]

Z. Yu, R. Yuan, C. -H. Hsu and M. Peng, Traveling waves for delayed cellular neural networks with nonmonotonic output functions Abstract and Applied Analysis 2014 (2014), ID 490161, 11pp. doi: 10.1155/2014/490161. Google Scholar

[48]

B. Zinner, Existence of travelling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. doi: 10.1016/0022-0396(92)90142-A. Google Scholar

show all references

References:
[1]

D. Aronson and H. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, J. A. Goldstein, ed., Lecture Notes in Mathematics Ser. 446, Springer-Verlag, Berlin, (1975), 5-49. Google Scholar

[2]

D. Aronson and H. Weinberger, Multidimensional nonlinear diffusion arising in population dynamics, Adv. Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5. Google Scholar

[3]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems-part Ⅰ, IEEE Trans. Circuits and Systems, 42 (1995), 746,752-751,756. doi: 10.1109/81.473583. Google Scholar

[4]

S.-N. ChowJ. Mallet-Paret and W. Shen, Travelling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248-291. doi: 10.1006/jdeq.1998.3478. Google Scholar

[5]

S. N. Chow and W. Shen, Stability and bifurcation of traveling wave solutions in coupled map lattices, J. Dynam. Systems Appl., 4 (1995), 1-25. Google Scholar

[6]

L. Chua, CNN: A Paradigm for Complexity World Scientific Series on Nonlinear Science, Series A, Vol. 31, World Scientific, Singapore, 1998.Google Scholar

[7]

L. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272. doi: 10.1109/31.7600. Google Scholar

[8]

L. Chua and L. Yang, Cellular neural networks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601. Google Scholar

[9]

P. P. CivalleriM. Gill and L. Pandolfi, On stability of cellular neural networks with delay, IEEE Trans, CAS, 40 (1993), 157-165. doi: 10.1109/81.222796. Google Scholar

[10]

J. Fang and X.-Q. Zhao, Traveling waves for monotone semiflows with weak compactness, SIAM J. Math. Anal., 46 (2014), 3678-3704. doi: 10.1137/140953939. Google Scholar

[11]

J. Fang and X. -Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications, J. Differential Equations, 248 (2010), 2199-2226. doi: 10.1016/j.jde.2010.01.009. Google Scholar

[12]

J. FangJ. Wei and X.-Q. Zhao, Spreading speeds and travelling waves for non-monotone time-delayed lattice equations, Proc. R. Soc. A, 466 (2010), 1919-1934. doi: 10.1098/rspa.2009.0577. Google Scholar

[13]

D. GolombX. J. Wang and J. Rinzel, Propagation of spindle waves in a thalamic slice model, J. Neurophysiol, 75 (1996), 750-769. Google Scholar

[14]

D. Golomb and Y. Amitai, Propagating neuronal discharges in neocortical slices: Computational and experimental study, J. Neurophysiol, 78 (1997), 1199-1211. Google Scholar

[15]

J. J. Hopfield and D. W. Tank, Neural computation of decisions in optimization problems, Biol. Cybern. 52 (1985), 141--152, Google Scholar

[16]

J. J. Hopfield and D. W. Tank, Computing with neural circuits: A model, Science (USA), 233 (1986), 625-633. doi: 10.1126/science.3755256. Google Scholar

[17]

C. HsuC. Li and S. Yang, Diversity of traveling wave solutions in delayed cellular neural networks, Internat. J. Bifur. Chaos, 18 (2008), 3515-3550. doi: 10.1142/S0218127408022561. Google Scholar

[18]

C. HsuS. Lin and W. Shen, Traveling waves in cellular neural networks, Internat. J. Bifur. Chaos, 9 (1999), 1307-1319. doi: 10.1142/S0218127499000912. Google Scholar

[19]

C. Hsu and S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical systems, J. Differential Equations, 164 (2000), 431-450. doi: 10.1006/jdeq.2000.3770. Google Scholar

[20]

C. Hsu and S. Yang, Structure of a class of traveling waves in delayed cellular neural networks, Discrete Contin. Dynam. Systems, 13 (2005), 339-359. doi: 10.3934/dcds.2005.13.339. Google Scholar

[21]

C. Hsu and S. Yang, Traveling wave solutions in cellular neural networks with multiple time delays, Discrete Contin. Dynam. Systems Suppl., (2005), 410-419. Google Scholar

[22]

S.-B. Hsu and X.-Q. Zhao, Spreading speeds and traveling waves for nonmonotone integrodifference equations, SIAM J. Math. Anal., 40 (2008), 776-789. doi: 10.1137/070703016. Google Scholar

[23]

J. Juang and S. S. Lin, Cellular neural networks: Mosaic pattern and spatial chaos, SIAM J. Appl. Math., 60 (2000), 891-915. doi: 10.1137/S0036139997323607. Google Scholar

[24]

J. P. Keener, Propagation and its failure to coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038. Google Scholar

[25]

B. LiH. Weinberger and M. Lewis, Spreading speeds as slowest wave speed for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008. Google Scholar

[26]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154. Google Scholar

[27]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Functional Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018. Google Scholar

[28]

X. LiangY. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems, Journal of Differential Equations, 231 (2006), 57-77. doi: 10.1016/j.jde.2006.04.010. Google Scholar

[29]

X. LiuP. Weng and Z. Xu, Existence of traveling wave solutions in nonlinear delayed cellular neural networks, Nonlinear Anal. RWA, 10 (2009), 277-286. doi: 10.1016/j.nonrwa.2007.09.010. Google Scholar

[30]

Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection, Applicable Analysis, 89 (2010), 1067-1089. doi: 10.1080/00036810903437804. Google Scholar

[31]

R. Lui, Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., 93 (1989), 269-295. doi: 10.1016/0025-5564(89)90026-6. Google Scholar

[32]

J. Mallet-Paret and S.-N. Chow, Pattern formation and spatial chaos in lattice dynamical systems, Ⅱ, IEEE Trans. Circuits and Systems, 42 (1995), 752-756. doi: 10.1109/81.473583. Google Scholar

[33]

J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127. doi: 10.1023/A:1021841618074. Google Scholar

[34]

V. Ptrez-MuiiuzuriV. Perez-Villar and L. O. Chua, Propagation failure in linear arrays of Chua's circuits, Int. J. Bifurc. and Chaos, 2 (1996), 403-406. doi: 10.1142/S0218127492000380. Google Scholar

[35]

T. Roska and L. Chua, Cellular neural networks with nonlinear and delay-time template elements and nonuniform grids, Int. J. Circuit Theory Appl., 20 (1992), 469-481. Google Scholar

[36]

A. Slavova, Cellular Neural Networks: Dynamics and Modelling Kluwer Academic Publishers, 2003. doi: 10.1007/978-94-017-0261-4. Google Scholar

[37]

H. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems Mathematical Surveys and Monographs, Vol. 41, American Mathematical Society, Providence, RI, 1995. Google Scholar

[38]

H. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8 (1979), 173-187. doi: 10.1007/BF00279720. Google Scholar

[39]

H. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470. doi: 10.1016/S0022-0396(03)00175-X. Google Scholar

[40]

H. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13 (1982), 353-396. doi: 10.1137/0513028. Google Scholar

[41]

P. Weng and J. Wu, Deformation of traveling waves in delayed cellular neural networks, Internat. J. Bifur. Chaos, 13 (2003), 797-813. doi: 10.1142/S0218127403006947. Google Scholar

[42]

P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model, J. Differential Equations, 229 (2006), 270-296. doi: 10.1016/j.jde.2006.01.020. Google Scholar

[43]

S. Wu and C. Hsu, Entire solutions of nonlinear cellular neural networks with distributed time delays, Nonlinearity, 25 (2012), 2785-2801. doi: 10.1088/0951-7715/25/9/2785. Google Scholar

[44]

S. Wu and C. Hsu, Entire solutions of non-quasi-monotone delayed reaction-diffusion equations with applications, Proc. Royal Soc. Edinb., 144 (2014), 1085-1112. doi: 10.1017/S0308210512001412. Google Scholar

[45]

Z. Yu and M. Mei, Uniqueness and stability of traveling waves for cellular neural networks with multiple delays, J. Differential Equations, 260 (2016), 241-267. doi: 10.1016/j.jde.2015.08.037. Google Scholar

[46]

Z. YuR. YuanC.-H. Hsu and Q. Jiang, Traveling waves for nonlinear cellular neural networks with distributed delays, J. Differential Equations, 251 (2011), 630-650. doi: 10.1016/j.jde.2011.05.008. Google Scholar

[47]

Z. Yu, R. Yuan, C. -H. Hsu and M. Peng, Traveling waves for delayed cellular neural networks with nonmonotonic output functions Abstract and Applied Analysis 2014 (2014), ID 490161, 11pp. doi: 10.1155/2014/490161. Google Scholar

[48]

B. Zinner, Existence of travelling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. doi: 10.1016/0022-0396(92)90142-A. Google Scholar

Figure 1.  The spread of wn, and the left plot shows 3-D graph of wn, and the right one indicates that projection of wn is on the plane (n; t)-plane.
Figure 2.  The rightward traveling waves observed for wn(t) in different views.
Figure 3.  The leftward traveling waves observed for wn(t) in different views.
Figure 4.  The leftward traveling waves observed for $w_n(t)$ in different views.
[1]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[2]

Abraham Solar. Stability of non-monotone and backward waves for delay non-local reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5799-5823. doi: 10.3934/dcds.2019255

[3]

Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331

[4]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[5]

Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919

[6]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[7]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[8]

M. W. Hirsch, Hal L. Smith. Asymptotically stable equilibria for monotone semiflows. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 385-398. doi: 10.3934/dcds.2006.14.385

[9]

Pablo Amster, Manuel Zamora. Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4819-4835. doi: 10.3934/dcds.2018211

[10]

Anatoli F. Ivanov, Bernhard Lani-Wayda. Periodic solutions for three-dimensional non-monotone cyclic systems with time delays. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 667-692. doi: 10.3934/dcds.2004.11.667

[11]

José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193

[12]

Ken-Ichi Nakamura, Toshiko Ogiwara. Periodically growing solutions in a class of strongly monotone semiflows. Networks & Heterogeneous Media, 2012, 7 (4) : 881-891. doi: 10.3934/nhm.2012.7.881

[13]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[14]

Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243

[15]

Thuc Manh Le, Nguyen Van Minh. Monotone traveling waves in a general discrete model for populations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3221-3234. doi: 10.3934/dcdsb.2017171

[16]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[17]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[18]

Monica Lazzo, Paul G. Schmidt. Monotone local semiflows with saddle-point dynamics and applications to semilinear diffusion equations. Conference Publications, 2005, 2005 (Special) : 566-575. doi: 10.3934/proc.2005.2005.566

[19]

Hans F. Weinberger, Xiao-Qiang Zhao. An extension of the formula for spreading speeds. Mathematical Biosciences & Engineering, 2010, 7 (1) : 187-194. doi: 10.3934/mbe.2010.7.187

[20]

Jian Fang, Jianhong Wu. Monotone traveling waves for delayed Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3043-3058. doi: 10.3934/dcds.2012.32.3043

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (34)
  • HTML views (64)
  • Cited by (0)

Other articles
by authors

[Back to Top]