February  2018, 38(2): 941-966. doi: 10.3934/dcds.2018040

Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors

Dep. de Matemáticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007, Oviedo, Spain

* Corresponding author: Enrique Vigil

Received  January 2017 Revised  September 2017 Published  February 2018

Fund Project: The authors are supported by project MINECO-15-MTM2014-56953-P

For a two parameter family of two-dimensional piecewise linear maps and for every natural number $n$, we prove not only the existence of intervals of parameters for which the respective maps are n times renormalizable but also we show the existence of intervals of parameters where the coexistence of at least $2^n$ strange attractors takes place. This family of maps contains the two-dimensional extension of the classical one-dimensional family of tent maps.

Citation: Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 941-966. doi: 10.3934/dcds.2018040
References:
[1]

M. Benedicks and L. Carleson, On iterations of $ 1-ax^2\;on\;(-1, 1)$, Annals of Mathematics, 122 (1985), 1-25. doi: 10.2307/1971367.

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map, Annals of Mathematics, 133 (1991), 73-169. doi: 10.2307/2944326.

[3]

K. M. Brucks and H. Bruin, Topics from One-Dimensional Dynamics Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511617171.

[4]

J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory and Dynamical Systems, 20 (2000), 697-708. doi: 10.1017/S0143385700000377.

[5]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1.

[6]

W. de Melo, Renormalization in one-dimensional dynamics, Journal of Difference Equations and Applications, 17 (2011), 1185-1197. doi: 10.1080/10236190902998016.

[7]

L. Mora and M. Viana, Abundance of strange attractors, Acta Mathematica, 171 (1993), 1-71. doi: 10.1007/BF02392766.

[8]

A. Pumariño and J. A. Rodríguez, Coexistence and Persistence of Strange Attractors Lecture Notes in Mathematics, 1658, Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0093337.

[9]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Piecewise linear bidimensional maps as models of return maps for 3D-diffeomorphisms, in Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., 54, Springer, Heidelberg, (2013), 351-366. doi: 10.1007/978-3-642-38830-9_22.

[10]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 523-541. doi: 10.3934/dcdsb.2014.19.523.

[11]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Chaotic dynamics for 2-d tent maps, Nonlinearity, 28 (2015), 407-434. doi: 10.1088/0951-7715/28/2/407.

[12]

A. PumariñoJ. A. Rodríguez and E. Vigil, Expanding Baker Maps: Coexistence of strange attractors, Discrete and Continuous Dynamical Systems -Series A, 37 (2017), 1651-1678. doi: 10.3934/dcds.2017068.

[13]

A. Pumariño and J. C. Tatjer, Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006), 2833-2852. doi: 10.1088/0951-7715/19/12/006.

[14]

A. Pumariño and J. C. Tatjer, Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphism, Discrete and Continuous Dynamical Systems -Series B, 8 (2007), 971-1005. doi: 10.3934/dcdsb.2007.8.971.

[15]

S. Sternberg, On the structure of local homeomorphisms of euclidean n-space, American Journal of Mathematics, 80 (1958), 623-631. doi: 10.2307/2372774.

[16]

J. C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory and Dynamical Systems, 21 (2001), 249-302. doi: 10.1017/S0143385701001146.

show all references

References:
[1]

M. Benedicks and L. Carleson, On iterations of $ 1-ax^2\;on\;(-1, 1)$, Annals of Mathematics, 122 (1985), 1-25. doi: 10.2307/1971367.

[2]

M. Benedicks and L. Carleson, The dynamics of the Hénon map, Annals of Mathematics, 133 (1991), 73-169. doi: 10.2307/2944326.

[3]

K. M. Brucks and H. Bruin, Topics from One-Dimensional Dynamics Cambridge University Press, Cambridge, 2004. doi: 10.1017/CBO9780511617171.

[4]

J. Buzzi, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory and Dynamical Systems, 20 (2000), 697-708. doi: 10.1017/S0143385700000377.

[5]

W. de Melo and S. van Strien, One-Dimensional Dynamics Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-642-78043-1.

[6]

W. de Melo, Renormalization in one-dimensional dynamics, Journal of Difference Equations and Applications, 17 (2011), 1185-1197. doi: 10.1080/10236190902998016.

[7]

L. Mora and M. Viana, Abundance of strange attractors, Acta Mathematica, 171 (1993), 1-71. doi: 10.1007/BF02392766.

[8]

A. Pumariño and J. A. Rodríguez, Coexistence and Persistence of Strange Attractors Lecture Notes in Mathematics, 1658, Springer-Verlag, Berlin, 1997. doi: 10.1007/BFb0093337.

[9]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Piecewise linear bidimensional maps as models of return maps for 3D-diffeomorphisms, in Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., 54, Springer, Heidelberg, (2013), 351-366. doi: 10.1007/978-3-642-38830-9_22.

[10]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 523-541. doi: 10.3934/dcdsb.2014.19.523.

[11]

A. PumariñoJ. A. RodríguezJ. C. Tatjer and E. Vigil, Chaotic dynamics for 2-d tent maps, Nonlinearity, 28 (2015), 407-434. doi: 10.1088/0951-7715/28/2/407.

[12]

A. PumariñoJ. A. Rodríguez and E. Vigil, Expanding Baker Maps: Coexistence of strange attractors, Discrete and Continuous Dynamical Systems -Series A, 37 (2017), 1651-1678. doi: 10.3934/dcds.2017068.

[13]

A. Pumariño and J. C. Tatjer, Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006), 2833-2852. doi: 10.1088/0951-7715/19/12/006.

[14]

A. Pumariño and J. C. Tatjer, Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphism, Discrete and Continuous Dynamical Systems -Series B, 8 (2007), 971-1005. doi: 10.3934/dcdsb.2007.8.971.

[15]

S. Sternberg, On the structure of local homeomorphisms of euclidean n-space, American Journal of Mathematics, 80 (1958), 623-631. doi: 10.2307/2372774.

[16]

J. C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory and Dynamical Systems, 21 (2001), 249-302. doi: 10.1017/S0143385701001146.

Figure 1.  Dynamics of $ \Gamma_{\mu} .$
Figure 2.  The smoothness domains for a map in $ \mathbb{F} .$
Figure 3.  The set $ \mathcal{R}_1 .$
Figure 4.  The set of parameters $ \mathcal{P}_1 .$
Figure 5.  The set $ \mathcal{R}_{a, b} .$
Figure 6.  The set of parameters $ \mathcal{P}_2 .$
Figure 7.  The set $ \mathcal{R}_{a, b} .$
Figure 8.  The sets $ \Delta_{a, b} $ and $ \Pi_{a, b} .$
Figure 9.  The iterates of $ \Delta_0:$ encircled in blue, the triangle $ \Delta_0 ;$ encircled in a dashed blue line, the set $ \Delta_4 .$
Figure 10.  The set of parameters $ \mathcal{P}_{\Delta} .$
Figure 11.  The sets of parameters $ \mathcal{P}_{\Delta}^{\prime} $ (dark grey) and $ \mathcal{P}_{\Delta} $ (pale grey).
Figure 12.  The iterates of $ \Pi_0 :$ encircled in green, the triangle $ \Pi_0 ;$ encircled in a dashed green line, the set $ \Pi_4 .$
Figure 13.  The set of parameters $ \mathcal{P}_{\Pi} .$
Figure 14.  (a) Filled in black, the set $ \mathcal{P}_3 ;$ encircled in a dashed black line, the set $ H_{\Delta}(\mathcal{P}_3) .$ (b) Filled in black, the set $ \mathcal{P}_3 ;$ encircled in a dashed black line, the set $ H_{\Pi}(\mathcal{P}_3) .$
Figure 15.  The relative position between $\gamma_0$ and $\eta_n.$
[1]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[2]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[3]

Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651

[4]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[5]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[6]

Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91

[7]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[8]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[9]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[10]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[11]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[12]

Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105

[13]

Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106

[14]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 657-670. doi: 10.3934/dcdsb.2018201

[15]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[16]

Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739

[17]

Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877

[18]

Nigel P. Byott, Mark Holland, Yiwei Zhang. On the mixing properties of piecewise expanding maps under composition with permutations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3365-3390. doi: 10.3934/dcds.2013.33.3365

[19]

Àngel Jorba, Pau Rabassa, Joan Carles Tatjer. Local study of a renormalization operator for 1D maps under quasiperiodic forcing. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1171-1188. doi: 10.3934/dcdss.2016047

[20]

Xu Zhang. Sinai-Ruelle-Bowen measures for piecewise hyperbolic maps with two directions of instability in three-dimensional spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2873-2886. doi: 10.3934/dcds.2016.36.2873

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (29)
  • HTML views (54)
  • Cited by (1)

[Back to Top]