For a two parameter family of two-dimensional piecewise linear maps and for every natural number $n$, we prove not only the existence of intervals of parameters for which the respective maps are n times renormalizable but also we show the existence of intervals of parameters where the coexistence of at least $2^n$ strange attractors takes place. This family of maps contains the two-dimensional extension of the classical one-dimensional family of tent maps.
Citation: |
M. Benedicks
and L. Carleson
, On iterations of $ 1-ax^2\;on\;(-1, 1)$, Annals of Mathematics, 122 (1985)
, 1-25.
doi: 10.2307/1971367.![]() ![]() ![]() |
|
M. Benedicks
and L. Carleson
, The dynamics of the Hénon map, Annals of Mathematics, 133 (1991)
, 73-169.
doi: 10.2307/2944326.![]() ![]() ![]() |
|
K. M. Brucks and H. Bruin,
Topics from One-Dimensional Dynamics Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617171.![]() ![]() ![]() |
|
J. Buzzi
, Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$ -analytic mappings of the plane, Ergodic Theory and Dynamical Systems, 20 (2000)
, 697-708.
doi: 10.1017/S0143385700000377.![]() ![]() ![]() |
|
W. de Melo and S. van Strien,
One-Dimensional Dynamics Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1.![]() ![]() ![]() |
|
W. de Melo
, Renormalization in one-dimensional dynamics, Journal of Difference Equations and Applications, 17 (2011)
, 1185-1197.
doi: 10.1080/10236190902998016.![]() ![]() ![]() |
|
L. Mora
and M. Viana
, Abundance of strange attractors, Acta Mathematica, 171 (1993)
, 1-71.
doi: 10.1007/BF02392766.![]() ![]() ![]() |
|
A. Pumariño and J. A. Rodríguez,
Coexistence and Persistence of Strange Attractors Lecture Notes in Mathematics, 1658, Springer-Verlag, Berlin, 1997.
doi: 10.1007/BFb0093337.![]() ![]() ![]() |
|
A. Pumariño
, J. A. Rodríguez
, J. C. Tatjer
and E. Vigil
, Piecewise linear bidimensional maps as models of return maps for 3D-diffeomorphisms, in Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., 54, Springer, Heidelberg, (2013)
, 351-366.
doi: 10.1007/978-3-642-38830-9_22.![]() ![]() ![]() |
|
A. Pumariño
, J. A. Rodríguez
, J. C. Tatjer
and E. Vigil
, Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations, Discrete and Continuous Dynamical Systems -Series B, 19 (2014)
, 523-541.
doi: 10.3934/dcdsb.2014.19.523.![]() ![]() ![]() |
|
A. Pumariño
, J. A. Rodríguez
, J. C. Tatjer
and E. Vigil
, Chaotic dynamics for 2-d tent maps, Nonlinearity, 28 (2015)
, 407-434.
doi: 10.1088/0951-7715/28/2/407.![]() ![]() ![]() |
|
A. Pumariño
, J. A. Rodríguez
and E. Vigil
, Expanding Baker Maps: Coexistence of strange attractors, Discrete and Continuous Dynamical Systems -Series A, 37 (2017)
, 1651-1678.
doi: 10.3934/dcds.2017068.![]() ![]() ![]() |
|
A. Pumariño
and J. C. Tatjer
, Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006)
, 2833-2852.
doi: 10.1088/0951-7715/19/12/006.![]() ![]() ![]() |
|
A. Pumariño
and J. C. Tatjer
, Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphism, Discrete and Continuous Dynamical Systems -Series B, 8 (2007)
, 971-1005.
doi: 10.3934/dcdsb.2007.8.971.![]() ![]() ![]() |
|
S. Sternberg
, On the structure of local homeomorphisms of euclidean n-space, American Journal of Mathematics, 80 (1958)
, 623-631.
doi: 10.2307/2372774.![]() ![]() ![]() |
|
J. C. Tatjer
, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory and Dynamical Systems, 21 (2001)
, 249-302.
doi: 10.1017/S0143385701001146.![]() ![]() ![]() |
Dynamics of
The smoothness domains for a map in
The set
The set of parameters
The set
The set of parameters
The set
The sets
The iterates of
The set of parameters
The sets of parameters
The iterates of
The set of parameters
(a) Filled in black, the set
The relative position between