
- Previous Article
- DCDS Home
- This Issue
-
Next Article
Propagation phenomena for CNNs with asymmetric templates and distributed delays
Renormalization of two-dimensional piecewise linear maps: Abundance of 2-D strange attractors
Dep. de Matemáticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007, Oviedo, Spain |
For a two parameter family of two-dimensional piecewise linear maps and for every natural number $n$, we prove not only the existence of intervals of parameters for which the respective maps are n times renormalizable but also we show the existence of intervals of parameters where the coexistence of at least $2^n$ strange attractors takes place. This family of maps contains the two-dimensional extension of the classical one-dimensional family of tent maps.
References:
[1] |
M. Benedicks and L. Carleson,
On iterations of $ 1-ax^2\;on\;(-1, 1)$, Annals of Mathematics, 122 (1985), 1-25.
doi: 10.2307/1971367. |
[2] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Annals of Mathematics, 133 (1991), 73-169.
doi: 10.2307/2944326. |
[3] |
K. M. Brucks and H. Bruin,
Topics from One-Dimensional Dynamics Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617171. |
[4] |
J. Buzzi,
Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory and Dynamical Systems, 20 (2000), 697-708.
doi: 10.1017/S0143385700000377. |
[5] |
W. de Melo and S. van Strien,
One-Dimensional Dynamics Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1. |
[6] |
W. de Melo,
Renormalization in one-dimensional dynamics, Journal of Difference Equations and Applications, 17 (2011), 1185-1197.
doi: 10.1080/10236190902998016. |
[7] |
L. Mora and M. Viana,
Abundance of strange attractors, Acta Mathematica, 171 (1993), 1-71.
doi: 10.1007/BF02392766. |
[8] |
A. Pumariño and J. A. Rodríguez,
Coexistence and Persistence of Strange Attractors Lecture Notes in Mathematics, 1658, Springer-Verlag, Berlin, 1997.
doi: 10.1007/BFb0093337. |
[9] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Piecewise linear bidimensional maps as models of return maps for 3D-diffeomorphisms, in Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., 54, Springer, Heidelberg, (2013), 351-366.
doi: 10.1007/978-3-642-38830-9_22. |
[10] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 523-541.
doi: 10.3934/dcdsb.2014.19.523. |
[11] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Chaotic dynamics for 2-d tent maps, Nonlinearity, 28 (2015), 407-434.
doi: 10.1088/0951-7715/28/2/407. |
[12] |
A. Pumariño, J. A. Rodríguez and E. Vigil,
Expanding Baker Maps: Coexistence of strange attractors, Discrete and Continuous Dynamical Systems -Series A, 37 (2017), 1651-1678.
doi: 10.3934/dcds.2017068. |
[13] |
A. Pumariño and J. C. Tatjer,
Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006), 2833-2852.
doi: 10.1088/0951-7715/19/12/006. |
[14] |
A. Pumariño and J. C. Tatjer,
Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphism, Discrete and Continuous Dynamical Systems -Series B, 8 (2007), 971-1005.
doi: 10.3934/dcdsb.2007.8.971. |
[15] |
S. Sternberg,
On the structure of local homeomorphisms of euclidean n-space, American Journal of Mathematics, 80 (1958), 623-631.
doi: 10.2307/2372774. |
[16] |
J. C. Tatjer,
Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory and Dynamical Systems, 21 (2001), 249-302.
doi: 10.1017/S0143385701001146. |
show all references
References:
[1] |
M. Benedicks and L. Carleson,
On iterations of $ 1-ax^2\;on\;(-1, 1)$, Annals of Mathematics, 122 (1985), 1-25.
doi: 10.2307/1971367. |
[2] |
M. Benedicks and L. Carleson,
The dynamics of the Hénon map, Annals of Mathematics, 133 (1991), 73-169.
doi: 10.2307/2944326. |
[3] |
K. M. Brucks and H. Bruin,
Topics from One-Dimensional Dynamics Cambridge University Press, Cambridge, 2004.
doi: 10.1017/CBO9780511617171. |
[4] |
J. Buzzi,
Absolutely continuous invariant probability measures for arbitrary expanding piecewise $\mathbb{R}$-analytic mappings of the plane, Ergodic Theory and Dynamical Systems, 20 (2000), 697-708.
doi: 10.1017/S0143385700000377. |
[5] |
W. de Melo and S. van Strien,
One-Dimensional Dynamics Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-78043-1. |
[6] |
W. de Melo,
Renormalization in one-dimensional dynamics, Journal of Difference Equations and Applications, 17 (2011), 1185-1197.
doi: 10.1080/10236190902998016. |
[7] |
L. Mora and M. Viana,
Abundance of strange attractors, Acta Mathematica, 171 (1993), 1-71.
doi: 10.1007/BF02392766. |
[8] |
A. Pumariño and J. A. Rodríguez,
Coexistence and Persistence of Strange Attractors Lecture Notes in Mathematics, 1658, Springer-Verlag, Berlin, 1997.
doi: 10.1007/BFb0093337. |
[9] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Piecewise linear bidimensional maps as models of return maps for 3D-diffeomorphisms, in Progress and Challenges in Dynamical Systems, Springer Proc. Math. Stat., 54, Springer, Heidelberg, (2013), 351-366.
doi: 10.1007/978-3-642-38830-9_22. |
[10] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations, Discrete and Continuous Dynamical Systems -Series B, 19 (2014), 523-541.
doi: 10.3934/dcdsb.2014.19.523. |
[11] |
A. Pumariño, J. A. Rodríguez, J. C. Tatjer and E. Vigil,
Chaotic dynamics for 2-d tent maps, Nonlinearity, 28 (2015), 407-434.
doi: 10.1088/0951-7715/28/2/407. |
[12] |
A. Pumariño, J. A. Rodríguez and E. Vigil,
Expanding Baker Maps: Coexistence of strange attractors, Discrete and Continuous Dynamical Systems -Series A, 37 (2017), 1651-1678.
doi: 10.3934/dcds.2017068. |
[13] |
A. Pumariño and J. C. Tatjer,
Dynamics near homoclinic bifurcations of three-dimensional dissipative diffeomorphisms, Nonlinearity, 19 (2006), 2833-2852.
doi: 10.1088/0951-7715/19/12/006. |
[14] |
A. Pumariño and J. C. Tatjer,
Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphism, Discrete and Continuous Dynamical Systems -Series B, 8 (2007), 971-1005.
doi: 10.3934/dcdsb.2007.8.971. |
[15] |
S. Sternberg,
On the structure of local homeomorphisms of euclidean n-space, American Journal of Mathematics, 80 (1958), 623-631.
doi: 10.2307/2372774. |
[16] |
J. C. Tatjer,
Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory and Dynamical Systems, 21 (2001), 249-302.
doi: 10.1017/S0143385701001146. |













[1] |
Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533 |
[2] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068 |
[3] |
Philip Boyland, André de Carvalho, Toby Hall. Statistical stability for Barge-Martin attractors derived from tent maps. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2903-2915. doi: 10.3934/dcds.2020154 |
[4] |
Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651 |
[5] |
Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979 |
[6] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[7] |
Viviane Baladi, Sébastien Gouëzel. Banach spaces for piecewise cone-hyperbolic maps. Journal of Modern Dynamics, 2010, 4 (1) : 91-137. doi: 10.3934/jmd.2010.4.91 |
[8] |
Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685 |
[9] |
Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 |
[10] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[11] |
Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451 |
[12] |
Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917 |
[13] |
Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105 |
[14] |
Magnus Aspenberg, Viviane Baladi, Juho Leppänen, Tomas Persson. On the fractional susceptibility function of piecewise expanding maps. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 679-706. doi: 10.3934/dcds.2021133 |
[15] |
Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106 |
[16] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 657-670. doi: 10.3934/dcdsb.2018201 |
[17] |
Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881 |
[18] |
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739 |
[19] |
Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 |
[20] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]