March  2018, 38(3): 967-988. doi: 10.3934/dcds.2018041

Non-formally integrable centers admitting an algebraic inverse integrating factor

Department of Mathematics, Faculty of Experimental Sciences, Avda. Tres de Marzo s/n, 21071 Huelva, Spain

* Corresponding author: Manuel Reyes

Received  April 2016 Revised  October 2017 Published  December 2017

We study the existence of a class of inverse integrating factor for a family of non-formally integrable systems whose lowest-degree quasi-homogeneous term is a Hamiltonian vector field. Once the existence of an inverse integrating factor is established, we study the systems having a center. Among others, we characterize the centers of the perturbations of the system $ -y^3\partial_x+x^3\partial_y$ having an algebraic inverse integrating factor.

Citation: Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041
References:
[1]

A. AlgabaE. FreireE. Gamero and C. García, Quasihomogeneous normal forms, J. Comput. Appl. Math., 150 (2003), 193-216.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[2]

A. AlgabaN. FuentesC. García and M. Reyes, A class of non-integrable systems admitting an inverse integrating factor, J. Math. Anal. Appl., 420 (2014), 1439-1454.  doi: 10.1016/j.jmaa.2014.06.047.  Google Scholar

[3]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. AlgabaC. García and J. Giné, Analytic integrability for some degenerate planar vector fields, J. Differential Equations, 257 (2014), 549-565.  doi: 10.1016/j.jde.2014.04.010.  Google Scholar

[5]

A. AlgabaC. García and M. Reyes, Nilpotent systems admitting an algebraic inverse integrating factor over $ \mathbb{C}((x,y))$, Qualitative Theory of Dynamical Systems, 10 (2011), 303-316.  doi: 10.1007/s12346-011-0046-9.  Google Scholar

[6]

A. AlgabaC. García and M. Reyes, Characterization of a monodromic singular point of a planar vector field, Nonlinear Analysis, 74 (2011), 5402-5414.  doi: 10.1016/j.na.2011.05.023.  Google Scholar

[7]

A. AlgabaC. García and M. Reyes, Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems, Chaos Solitons & Fractals, 45 (2012), 869-878.  doi: 10.1016/j.chaos.2012.02.016.  Google Scholar

[8]

A. GarcíaC. Algaba and M. Reyes, Like-linearizations of vector fields, Bulletin des Sciences Mathématiques, 133 (2009), 806-816.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[9]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier, 44 (1994), 465-494.  doi: 10.5802/aif.1406.  Google Scholar

[10]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems; Geometry, Topology, Classification, Chapman and Hall, 2004.  Google Scholar

[11]

J. ChavarrigaH. GiacominiJ. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157 (1999), 163-182.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[12]

J. ChavarrigaH. GiacominiJ. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Differential Equations, 194 (2003), 116-139.  doi: 10.1016/S0022-0396(03)00190-6.  Google Scholar

[13]

C. J. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial differential systems, Ann. Differential Equations, 16 (2000), 5-19.   Google Scholar

[14]

C. ChristopherP. Mardesic and C. Rousseau, Normalizable, integrable, and linealizable saddle points for complex quadratic systems in $ \mathbb{C}^2$, J. Dyn. Control Syst., 9 (2003), 311-363.  doi: 10.1023/A:1024643521094.  Google Scholar

[15]

H. R. Dullin and A. Pelayo, Generating hyperbolic singularities in semitoric systems via Hopf bifurcations, J. Nonlinear Science, 26 (2016), 787-811.  doi: 10.1007/s00332-016-9290-0.  Google Scholar

[16]

H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting, integrals -elliptic case, Comm. Math. Helv., 65 (1990), 4-35.  doi: 10.1007/BF02566590.  Google Scholar

[17]

A. Enciso and D. Peralta-Salas, Existence and vanishing set of inverse integrating factors for analytic vector fields, Bull. London Math. Soc., 41 (2009), 1112-1124.  doi: 10.1112/blms/bdp090.  Google Scholar

[18]

I. GarcíaH. Giacomini and M. Grau, The inverse integrating factor and the Poincaré map, Trans. Amer. Math. Soc., 362 (2010), 3591-3612.  doi: 10.1090/S0002-9947-10-05014-2.  Google Scholar

[19]

I. GarcíaH. Giacomini and M. Grau, Generalized Hopf Bifurcation for planar vector fields via the inverse integrating factor, J. Dyn. Differ. Equat., 23 (2011), 251-281.  doi: 10.1007/s10884-011-9209-2.  Google Scholar

[20]

I. García and M. Grau, A survey on the inverse integrating factor, Qual. Theory Dyn. Sist., 9 (2010), 115-166.  doi: 10.1007/s12346-010-0023-8.  Google Scholar

[21]

I. García and D. Shafer, Integral invariants and limit sets of planar vector fields, J. Differential Equations, 217 (2005), 363-376.  doi: 10.1016/j.jde.2005.06.022.  Google Scholar

[22]

A. Gasull and J. Torregrosa, Center problem for several differential equations via Cherkas' method, J. Math. Anal. Appl., 228 (1998), 322-343.  doi: 10.1006/jmaa.1998.6112.  Google Scholar

[23]

H. GiacominiJ. Llibre and M. Viano, On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity, 9 (1996), 501-516.  doi: 10.1088/0951-7715/9/2/013.  Google Scholar

[24]

J. Giné and D. Peralta-Salas, Existence of inverse integrating factors and Lie symmetries for degenerate planar centers, J. Differential Equations, 252 (2012), 344-357.  doi: 10.1016/j.jde.2011.08.044.  Google Scholar

[25]

R. E. Kooij and C. J. Christopher, Algebraic invariant curves and the integrability of polynomial systems, Appl. Math. Lett., 6 (1993), 51-53.  doi: 10.1016/0893-9659(93)90123-5.  Google Scholar

[26]

L. Mazzi and M. Sabatini, A characterization of centers via first integrals, J. Differential Equations, 76 (1988), 222-237.  doi: 10.1016/0022-0396(88)90072-1.  Google Scholar

[27]

R. Moussu, Symétrie et forme normaledes centres et foyers dégénérés, Ergodic Theory Dynam. Sys., 2 (1982), 241-251.   Google Scholar

[28]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math., 37 (1881), 375-422.   Google Scholar

[29]

M. J. Prelle and M. F. Singer, Elementary first integrals of of differential equations, Trans. Amer. Math. Soc., 279 (1983), 215-229.  doi: 10.1090/S0002-9947-1983-0704611-X.  Google Scholar

[30]

A. P. Sadovskii, Problem of distinguishing a center and a focus for a system with a nonvanishing linear part, Diff. Urav., 12 (1976), 1238-1246 (in Russian).   Google Scholar

[31]

S. Walcher, On the Poincaré problem, J. Differential Equations, 166 (2000), 51-78.  doi: 10.1006/jdeq.2000.3801.  Google Scholar

[32]

S. Walcher, Local integrating factors, J. Lie Theory, 13 (2003), 279-289.   Google Scholar

show all references

References:
[1]

A. AlgabaE. FreireE. Gamero and C. García, Quasihomogeneous normal forms, J. Comput. Appl. Math., 150 (2003), 193-216.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[2]

A. AlgabaN. FuentesC. García and M. Reyes, A class of non-integrable systems admitting an inverse integrating factor, J. Math. Anal. Appl., 420 (2014), 1439-1454.  doi: 10.1016/j.jmaa.2014.06.047.  Google Scholar

[3]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 395-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[4]

A. AlgabaC. García and J. Giné, Analytic integrability for some degenerate planar vector fields, J. Differential Equations, 257 (2014), 549-565.  doi: 10.1016/j.jde.2014.04.010.  Google Scholar

[5]

A. AlgabaC. García and M. Reyes, Nilpotent systems admitting an algebraic inverse integrating factor over $ \mathbb{C}((x,y))$, Qualitative Theory of Dynamical Systems, 10 (2011), 303-316.  doi: 10.1007/s12346-011-0046-9.  Google Scholar

[6]

A. AlgabaC. García and M. Reyes, Characterization of a monodromic singular point of a planar vector field, Nonlinear Analysis, 74 (2011), 5402-5414.  doi: 10.1016/j.na.2011.05.023.  Google Scholar

[7]

A. AlgabaC. García and M. Reyes, Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems, Chaos Solitons & Fractals, 45 (2012), 869-878.  doi: 10.1016/j.chaos.2012.02.016.  Google Scholar

[8]

A. GarcíaC. Algaba and M. Reyes, Like-linearizations of vector fields, Bulletin des Sciences Mathématiques, 133 (2009), 806-816.  doi: 10.1016/j.bulsci.2009.09.006.  Google Scholar

[9]

M. Berthier and R. Moussu, Réversibilité et classification des centres nilpotents, Ann. Inst. Fourier, 44 (1994), 465-494.  doi: 10.5802/aif.1406.  Google Scholar

[10]

A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems; Geometry, Topology, Classification, Chapman and Hall, 2004.  Google Scholar

[11]

J. ChavarrigaH. GiacominiJ. Giné and J. Llibre, On the integrability of two-dimensional flows, J. Differential Equations, 157 (1999), 163-182.  doi: 10.1006/jdeq.1998.3621.  Google Scholar

[12]

J. ChavarrigaH. GiacominiJ. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Differential Equations, 194 (2003), 116-139.  doi: 10.1016/S0022-0396(03)00190-6.  Google Scholar

[13]

C. J. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial differential systems, Ann. Differential Equations, 16 (2000), 5-19.   Google Scholar

[14]

C. ChristopherP. Mardesic and C. Rousseau, Normalizable, integrable, and linealizable saddle points for complex quadratic systems in $ \mathbb{C}^2$, J. Dyn. Control Syst., 9 (2003), 311-363.  doi: 10.1023/A:1024643521094.  Google Scholar

[15]

H. R. Dullin and A. Pelayo, Generating hyperbolic singularities in semitoric systems via Hopf bifurcations, J. Nonlinear Science, 26 (2016), 787-811.  doi: 10.1007/s00332-016-9290-0.  Google Scholar

[16]

H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting, integrals -elliptic case, Comm. Math. Helv., 65 (1990), 4-35.  doi: 10.1007/BF02566590.  Google Scholar

[17]

A. Enciso and D. Peralta-Salas, Existence and vanishing set of inverse integrating factors for analytic vector fields, Bull. London Math. Soc., 41 (2009), 1112-1124.  doi: 10.1112/blms/bdp090.  Google Scholar

[18]

I. GarcíaH. Giacomini and M. Grau, The inverse integrating factor and the Poincaré map, Trans. Amer. Math. Soc., 362 (2010), 3591-3612.  doi: 10.1090/S0002-9947-10-05014-2.  Google Scholar

[19]

I. GarcíaH. Giacomini and M. Grau, Generalized Hopf Bifurcation for planar vector fields via the inverse integrating factor, J. Dyn. Differ. Equat., 23 (2011), 251-281.  doi: 10.1007/s10884-011-9209-2.  Google Scholar

[20]

I. García and M. Grau, A survey on the inverse integrating factor, Qual. Theory Dyn. Sist., 9 (2010), 115-166.  doi: 10.1007/s12346-010-0023-8.  Google Scholar

[21]

I. García and D. Shafer, Integral invariants and limit sets of planar vector fields, J. Differential Equations, 217 (2005), 363-376.  doi: 10.1016/j.jde.2005.06.022.  Google Scholar

[22]

A. Gasull and J. Torregrosa, Center problem for several differential equations via Cherkas' method, J. Math. Anal. Appl., 228 (1998), 322-343.  doi: 10.1006/jmaa.1998.6112.  Google Scholar

[23]

H. GiacominiJ. Llibre and M. Viano, On the nonexistence, existence and uniqueness of limit cycles, Nonlinearity, 9 (1996), 501-516.  doi: 10.1088/0951-7715/9/2/013.  Google Scholar

[24]

J. Giné and D. Peralta-Salas, Existence of inverse integrating factors and Lie symmetries for degenerate planar centers, J. Differential Equations, 252 (2012), 344-357.  doi: 10.1016/j.jde.2011.08.044.  Google Scholar

[25]

R. E. Kooij and C. J. Christopher, Algebraic invariant curves and the integrability of polynomial systems, Appl. Math. Lett., 6 (1993), 51-53.  doi: 10.1016/0893-9659(93)90123-5.  Google Scholar

[26]

L. Mazzi and M. Sabatini, A characterization of centers via first integrals, J. Differential Equations, 76 (1988), 222-237.  doi: 10.1016/0022-0396(88)90072-1.  Google Scholar

[27]

R. Moussu, Symétrie et forme normaledes centres et foyers dégénérés, Ergodic Theory Dynam. Sys., 2 (1982), 241-251.   Google Scholar

[28]

H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math., 37 (1881), 375-422.   Google Scholar

[29]

M. J. Prelle and M. F. Singer, Elementary first integrals of of differential equations, Trans. Amer. Math. Soc., 279 (1983), 215-229.  doi: 10.1090/S0002-9947-1983-0704611-X.  Google Scholar

[30]

A. P. Sadovskii, Problem of distinguishing a center and a focus for a system with a nonvanishing linear part, Diff. Urav., 12 (1976), 1238-1246 (in Russian).   Google Scholar

[31]

S. Walcher, On the Poincaré problem, J. Differential Equations, 166 (2000), 51-78.  doi: 10.1006/jdeq.2000.3801.  Google Scholar

[32]

S. Walcher, Local integrating factors, J. Lie Theory, 13 (2003), 279-289.   Google Scholar

Table 1.  Range and co-range of operator $\ell_{j} $ for the system (8).
Range($\ell_{2}$)=span{$-bx^2-3y^2,3ax^2+2bxy$}.
If $a\ne 0,$ Cor($\ell_{2}$)=span{$xy$}. If $a=0$, Cor($\ell_{2}$)=span{$x^2$}.
Range($\ell_{3}$)=span{$-2bx^3-6xy^2,6ax^3+4bx^2y-3h,6ax^2y+4bxy^2$}.
Cor($\ell_{3}$)=span{$h$}.
Range($\ell_{4}$)=span{$3bx^4+9x^2y^2,-9ax^4-6bx^3y+6xh,$ $ -9ax^3y-6bx^2y^2+3yh$}.
Cor($\ell_{4}$)=span{$xh,yh$}.
Range($\ell_{2}$)=span{$-bx^2-3y^2,3ax^2+2bxy$}.
If $a\ne 0,$ Cor($\ell_{2}$)=span{$xy$}. If $a=0$, Cor($\ell_{2}$)=span{$x^2$}.
Range($\ell_{3}$)=span{$-2bx^3-6xy^2,6ax^3+4bx^2y-3h,6ax^2y+4bxy^2$}.
Cor($\ell_{3}$)=span{$h$}.
Range($\ell_{4}$)=span{$3bx^4+9x^2y^2,-9ax^4-6bx^3y+6xh,$ $ -9ax^3y-6bx^2y^2+3yh$}.
Cor($\ell_{4}$)=span{$xh,yh$}.
Table 2.  Range and co-range of operator $\ell_{j} $ for the system (15)
Range($\ell_{6}$)=span{$0$}, Cor($\ell_{6}$)=span{$x^2$}
Range($\ell_{7}$)=span{$0$}, Cor($\ell_{7}$)=span{$xy$}
Range($\ell_{8}$)=span{$y^2$}, Cor($\ell_{8}$)=span{$0$}
Range($\ell_{9}$)=span{$x^3$}, Cor($\ell_{9}$)=span{$0$}
Range($\ell_{10}$)=span{$0$}, Cor($\ell_{10}$)=span{$x^2y$}
Range($\ell_{11}$)=span{$xy^2$}, Cor($\ell_{11}$)=span{$0$}
Range($\ell_{12}$)=span{$7x^4-12h$}, Cor($\ell_{12}$)=span{$h$}
Range($\ell_{13}$)=span{$x^3y$}, Cor($\ell_{13}$)={$0$}
Range($\ell_{14}$)=span{$x^2y^2$}, Cor($\ell_{14}$)={$0$}
Range($\ell_{15}$)=span{$x^3-6xh$}, Cor($\ell_{15}$)=span{$xh$}
Range($\ell_{16}$)=span{$11x^4y-12yh$}, Cor($\ell_{16}$)=span{$yh$}
Range($\ell_{17}$)=span{$x^3y^2$}, Cor($\ell_{17}$)={$0$}
Range($\ell_{18}$)=span{$13x^6-36x^2h$}, Cor($\ell_{18}$)=span{$x^2h$}
Range($\ell_{19}$)=span{$7x^5-12xyh$}, Cor($\ell_{19}$)=span{$xyh$}
Range($\ell_{22}$)=span{$17x^6y-9x^2yh$}, Cor($\ell_{22}$)=span{$x^2yh$}
Range($\ell_{6}$)=span{$0$}, Cor($\ell_{6}$)=span{$x^2$}
Range($\ell_{7}$)=span{$0$}, Cor($\ell_{7}$)=span{$xy$}
Range($\ell_{8}$)=span{$y^2$}, Cor($\ell_{8}$)=span{$0$}
Range($\ell_{9}$)=span{$x^3$}, Cor($\ell_{9}$)=span{$0$}
Range($\ell_{10}$)=span{$0$}, Cor($\ell_{10}$)=span{$x^2y$}
Range($\ell_{11}$)=span{$xy^2$}, Cor($\ell_{11}$)=span{$0$}
Range($\ell_{12}$)=span{$7x^4-12h$}, Cor($\ell_{12}$)=span{$h$}
Range($\ell_{13}$)=span{$x^3y$}, Cor($\ell_{13}$)={$0$}
Range($\ell_{14}$)=span{$x^2y^2$}, Cor($\ell_{14}$)={$0$}
Range($\ell_{15}$)=span{$x^3-6xh$}, Cor($\ell_{15}$)=span{$xh$}
Range($\ell_{16}$)=span{$11x^4y-12yh$}, Cor($\ell_{16}$)=span{$yh$}
Range($\ell_{17}$)=span{$x^3y^2$}, Cor($\ell_{17}$)={$0$}
Range($\ell_{18}$)=span{$13x^6-36x^2h$}, Cor($\ell_{18}$)=span{$x^2h$}
Range($\ell_{19}$)=span{$7x^5-12xyh$}, Cor($\ell_{19}$)=span{$xyh$}
Range($\ell_{22}$)=span{$17x^6y-9x^2yh$}, Cor($\ell_{22}$)=span{$x^2yh$}
Table 3.  Range and co-range of operator $\ell_{j} $ for the system (21).
Range($\ell_{3}$)=span{$x^3,y^3$}.
Cor($\ell_{3}$)=span{$x^2y,xy^2$}.
Range($\ell_{4}$)=span{$xy^3,x^4+2h,x^3y$}.
Cor($\ell_{4}$)=span{$x^2y^2,h$}.
Range($\ell_{5}$)=span{$x^2y^3,3x^5+8xh,3x^4y+4yh,x^3y^2$}.
Cor($\ell_{5}$)=span{$xh,yh$}.
Range($\ell_{6}$)=span{$x^3y^3,x^6+3x^2h,x^5y+2xyh, x^4y^2+y^2h$}.
Cor($\ell_{6}$)=span{$x^2h,xyh,y^2h$}.
Range($\ell_{3}$)=span{$x^3,y^3$}.
Cor($\ell_{3}$)=span{$x^2y,xy^2$}.
Range($\ell_{4}$)=span{$xy^3,x^4+2h,x^3y$}.
Cor($\ell_{4}$)=span{$x^2y^2,h$}.
Range($\ell_{5}$)=span{$x^2y^3,3x^5+8xh,3x^4y+4yh,x^3y^2$}.
Cor($\ell_{5}$)=span{$xh,yh$}.
Range($\ell_{6}$)=span{$x^3y^3,x^6+3x^2h,x^5y+2xyh, x^4y^2+y^2h$}.
Cor($\ell_{6}$)=span{$x^2h,xyh,y^2h$}.
[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[7]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[11]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[12]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[13]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[16]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[17]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[19]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[20]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (153)
  • HTML views (197)
  • Cited by (0)

[Back to Top]