We prove a sharp estimate up to a logarithmic factor on the rate of equidistribution of coordinate horocycle flows on $ Γ \backslash{\rm{PSL}}(2, \mathbb{R})^d$, where $ d ∈ \mathbb{N}_{≥2}$ and $ Γ \subset {\rm{PSL}}(2, \mathbb{R})^d$ is a cocompact and irreducible lattice. As a consequence, we prove exponential multiple mixing for partially hyperbolic coordinate geodesic flows on these manifolds.
Citation: |
M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative Multiple Mixing, to appear in J. Eur. Math. Soc. (JEMS)
![]() |
|
M. Brin
and Y. Pessin
, Flows of frames on manifolds of negative curvature, Uspehi Mat. Nauk., 28 (1973)
, 209-210.
![]() ![]() |
|
M. Brin
and Y. Pessin
, Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974)
, 170-212.
![]() ![]() |
|
T. Browning
and Ilya Vinogradov
, Effective Ratner theorem for $ {\rm{ASL}}(2, \mathbb{R})$ and gaps in $ \sqrt{n}$ modulo 1, J. London Math. Soc., 94 (2016)
, 61-84.
![]() |
|
S. G. Dani
, Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math., 98 (1976)
, 119-163.
doi: 10.2307/2373618.![]() ![]() ![]() |
|
S. G. Dani
, Spectrum of an affine transformation, Duke Math. J., 44 (1977)
, 129-155.
doi: 10.1215/S0012-7094-77-04407-6.![]() ![]() ![]() |
|
D. Dolgopyat
, Limit theorems for partially hyperbolic systems, Transactions of the American Mathematical Society, 356 (2004)
, 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X.![]() ![]() ![]() |
|
D. Dolgopyat
, On Decay of correlations in Anosov flows, Annals of Math., 147 (1998)
, 357-390.
doi: 10.2307/121012.![]() ![]() ![]() |
|
L. Flaminio
and G. Forni
, Invariant Distributions and Time Averages for Horocycle Flows, Duke J. of Math., 119 (2003)
, 465-526.
doi: 10.1215/S0012-7094-03-11932-8.![]() ![]() ![]() |
|
L. Flaminio and G. Forni, On effective equidistribution for higher step nilflows, arXiv:1407.3640
![]() |
|
L. Flaminio
, G. Forni
and J. Tanis
, Effective equidistribution of twisted horocycle flows and horocycle maps, Geometric and Functional Analysis, 26 (5)
, 1359-1448.
![]() |
|
A. Gorodnik
and R. Spatzier
, Exponential mixing of nilmanifold automorphsims, Journal d'Analyse Methematique, 123 (2014)
, 355-396.
doi: 10.1007/s11854-014-0024-7.![]() ![]() ![]() |
|
D. Kelmer
and P. Sarnak
, Strong spectral gaps for compact quotients of products of $ {\rm{PSL}}(2, \mathbb R)$, J. Eur. Math. Soc., 11 (2009)
, 283-313.
![]() ![]() |
|
I. Konstantoulas
, Effective decay of multiple correlations in semidirect product actions, Journal of Modern Dynamics, 10 (2016)
, 81-111.
doi: 10.3934/jmd.2016.10.81.![]() ![]() ![]() |
|
C. Liverani
, On Contact Anosov flows, Annals of Math., 159 (2004)
, 1275-1312.
doi: 10.4007/annals.2004.159.1275.![]() ![]() ![]() |
|
E. Nelson
, Analytic vectors, Annals of Math., 70 (1959)
, 572-615.
doi: 10.2307/1970331.![]() ![]() ![]() |
|
A. Strombergsson
, An Effective Ratner Equidistribution Result for $ {\rm{SL}}(2,\mathbb R)\ltimes \mathbb R^2$, Duke Math. J., 164 (2015)
, 843-902.
doi: 10.1215/00127094-2885873.![]() ![]() ![]() |
|
J. Tanis
and P. Vishe
, Uniform bounds for period integrals and sparse equidistribution, International Mathematics Research Notices, (2015)
, 13728-13756.
doi: 10.1093/imrn/rnv115.![]() ![]() ![]() |
|
J. Tanis, Effective equidistribution for some unipotent flows in $ {\rm{PSL}}(2, \mathbb{R})^k$ mod cocompact irreducible lattice, arXiv:1412.5353v3
![]() |
|
A. Venkatesh
, Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math., 172 (2010)
, 989-1094.
doi: 10.4007/annals.2010.172.989.![]() ![]() ![]() |
|
I. Ilya Vinogradov, Effective equidistribution of horocycle lifts, arXiv:1607.04769
![]() |