-
Previous Article
What is topological about topological dynamics?
- DCDS Home
- This Issue
-
Next Article
Non-formally integrable centers admitting an algebraic inverse integrating factor
Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$
USA |
We prove a sharp estimate up to a logarithmic factor on the rate of equidistribution of coordinate horocycle flows on $ Γ \backslash{\rm{PSL}}(2, \mathbb{R})^d$, where $ d ∈ \mathbb{N}_{≥2}$ and $ Γ \subset {\rm{PSL}}(2, \mathbb{R})^d$ is a cocompact and irreducible lattice. As a consequence, we prove exponential multiple mixing for partially hyperbolic coordinate geodesic flows on these manifolds.
References:
[1] |
M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative Multiple Mixing, to appear in J. Eur. Math. Soc. (JEMS) Google Scholar |
[2] |
M. Brin and Y. Pessin,
Flows of frames on manifolds of negative curvature, Uspehi Mat. Nauk., 28 (1973), 209-210.
|
[3] |
M. Brin and Y. Pessin,
Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.
|
[4] |
T. Browning and Ilya Vinogradov, Effective Ratner theorem for $ {\rm{ASL}}(2, \mathbb{R})$ and gaps in $ \sqrt{n}$ modulo 1, J. London Math. Soc., 94 (2016), 61-84. Google Scholar |
[5] |
S. G. Dani,
Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math., 98 (1976), 119-163.
doi: 10.2307/2373618. |
[6] |
S. G. Dani,
Spectrum of an affine transformation, Duke Math. J., 44 (1977), 129-155.
doi: 10.1215/S0012-7094-77-04407-6. |
[7] |
D. Dolgopyat,
Limit theorems for partially hyperbolic systems, Transactions of the American Mathematical Society, 356 (2004), 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X. |
[8] |
D. Dolgopyat,
On Decay of correlations in Anosov flows, Annals of Math., 147 (1998), 357-390.
doi: 10.2307/121012. |
[9] |
L. Flaminio and G. Forni,
Invariant Distributions and Time Averages for Horocycle Flows, Duke J. of Math., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[10] |
L. Flaminio and G. Forni, On effective equidistribution for higher step nilflows, arXiv:1407.3640 Google Scholar |
[11] |
L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geometric and Functional Analysis, 26 (5), 1359-1448. Google Scholar |
[12] |
A. Gorodnik and R. Spatzier,
Exponential mixing of nilmanifold automorphsims, Journal d'Analyse Methematique, 123 (2014), 355-396.
doi: 10.1007/s11854-014-0024-7. |
[13] |
D. Kelmer and P. Sarnak,
Strong spectral gaps for compact quotients of products of $ {\rm{PSL}}(2, \mathbb R)$, J. Eur. Math. Soc., 11 (2009), 283-313.
|
[14] |
I. Konstantoulas,
Effective decay of multiple correlations in semidirect product actions, Journal of Modern Dynamics, 10 (2016), 81-111.
doi: 10.3934/jmd.2016.10.81. |
[15] |
C. Liverani,
On Contact Anosov flows, Annals of Math., 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[16] |
E. Nelson,
Analytic vectors, Annals of Math., 70 (1959), 572-615.
doi: 10.2307/1970331. |
[17] |
A. Strombergsson,
An Effective Ratner Equidistribution Result for $ {\rm{SL}}(2,\mathbb R)\ltimes \mathbb R^2$, Duke Math. J., 164 (2015), 843-902.
doi: 10.1215/00127094-2885873. |
[18] |
J. Tanis and P. Vishe,
Uniform bounds for period integrals and sparse equidistribution, International Mathematics Research Notices, (2015), 13728-13756.
doi: 10.1093/imrn/rnv115. |
[19] |
J. Tanis, Effective equidistribution for some unipotent flows in $ {\rm{PSL}}(2, \mathbb{R})^k$ mod cocompact irreducible lattice, arXiv:1412.5353v3 Google Scholar |
[20] |
A. Venkatesh,
Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math., 172 (2010), 989-1094.
doi: 10.4007/annals.2010.172.989. |
[21] |
I. Ilya Vinogradov, Effective equidistribution of horocycle lifts, arXiv:1607.04769 Google Scholar |
show all references
References:
[1] |
M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative Multiple Mixing, to appear in J. Eur. Math. Soc. (JEMS) Google Scholar |
[2] |
M. Brin and Y. Pessin,
Flows of frames on manifolds of negative curvature, Uspehi Mat. Nauk., 28 (1973), 209-210.
|
[3] |
M. Brin and Y. Pessin,
Partially hyperbolic dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat., 38 (1974), 170-212.
|
[4] |
T. Browning and Ilya Vinogradov, Effective Ratner theorem for $ {\rm{ASL}}(2, \mathbb{R})$ and gaps in $ \sqrt{n}$ modulo 1, J. London Math. Soc., 94 (2016), 61-84. Google Scholar |
[5] |
S. G. Dani,
Kolmogorov automorphisms on homogeneous spaces, Amer. J. Math., 98 (1976), 119-163.
doi: 10.2307/2373618. |
[6] |
S. G. Dani,
Spectrum of an affine transformation, Duke Math. J., 44 (1977), 129-155.
doi: 10.1215/S0012-7094-77-04407-6. |
[7] |
D. Dolgopyat,
Limit theorems for partially hyperbolic systems, Transactions of the American Mathematical Society, 356 (2004), 1637-1689.
doi: 10.1090/S0002-9947-03-03335-X. |
[8] |
D. Dolgopyat,
On Decay of correlations in Anosov flows, Annals of Math., 147 (1998), 357-390.
doi: 10.2307/121012. |
[9] |
L. Flaminio and G. Forni,
Invariant Distributions and Time Averages for Horocycle Flows, Duke J. of Math., 119 (2003), 465-526.
doi: 10.1215/S0012-7094-03-11932-8. |
[10] |
L. Flaminio and G. Forni, On effective equidistribution for higher step nilflows, arXiv:1407.3640 Google Scholar |
[11] |
L. Flaminio, G. Forni and J. Tanis, Effective equidistribution of twisted horocycle flows and horocycle maps, Geometric and Functional Analysis, 26 (5), 1359-1448. Google Scholar |
[12] |
A. Gorodnik and R. Spatzier,
Exponential mixing of nilmanifold automorphsims, Journal d'Analyse Methematique, 123 (2014), 355-396.
doi: 10.1007/s11854-014-0024-7. |
[13] |
D. Kelmer and P. Sarnak,
Strong spectral gaps for compact quotients of products of $ {\rm{PSL}}(2, \mathbb R)$, J. Eur. Math. Soc., 11 (2009), 283-313.
|
[14] |
I. Konstantoulas,
Effective decay of multiple correlations in semidirect product actions, Journal of Modern Dynamics, 10 (2016), 81-111.
doi: 10.3934/jmd.2016.10.81. |
[15] |
C. Liverani,
On Contact Anosov flows, Annals of Math., 159 (2004), 1275-1312.
doi: 10.4007/annals.2004.159.1275. |
[16] |
E. Nelson,
Analytic vectors, Annals of Math., 70 (1959), 572-615.
doi: 10.2307/1970331. |
[17] |
A. Strombergsson,
An Effective Ratner Equidistribution Result for $ {\rm{SL}}(2,\mathbb R)\ltimes \mathbb R^2$, Duke Math. J., 164 (2015), 843-902.
doi: 10.1215/00127094-2885873. |
[18] |
J. Tanis and P. Vishe,
Uniform bounds for period integrals and sparse equidistribution, International Mathematics Research Notices, (2015), 13728-13756.
doi: 10.1093/imrn/rnv115. |
[19] |
J. Tanis, Effective equidistribution for some unipotent flows in $ {\rm{PSL}}(2, \mathbb{R})^k$ mod cocompact irreducible lattice, arXiv:1412.5353v3 Google Scholar |
[20] |
A. Venkatesh,
Sparse equidistribution problems, period bounds and subconvexity, Ann. of Math., 172 (2010), 989-1094.
doi: 10.4007/annals.2010.172.989. |
[21] |
I. Ilya Vinogradov, Effective equidistribution of horocycle lifts, arXiv:1607.04769 Google Scholar |
[1] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[2] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[3] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[4] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[5] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[6] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[7] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[8] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[9] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[10] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[11] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[12] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[13] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
[14] |
Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097 |
[15] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[16] |
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020369 |
[17] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[18] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[19] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
[20] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]