We consider various notions from the theory of dynamical systems from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. These Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definition stated in terms of a metric in compact metric spaces.
We show for example that in a Tychonoff space, transitivity and dense periodic points imply (uniform) sensitivity to initial conditions. We generalise Bryant's result that a compact Hausdorff space admitting a $c$-expansive homeomorphism in the obvious uniform sense is metrizable. We study versions of shadowing, generalising a number of well-known results to the topological setting, and internal chain transitivity, showing for example that $ω$-limit sets are (uniform) internally chain transitive and weak incompressibility is equivalent to (uniform) internal chain transitivity in compact spaces.
Citation: |
E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics (1), Amer. Math. Soc., Providence, RI, 1993.
![]() ![]() |
|
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 5 (1996), 25-40.
![]() ![]() |
|
E. Akin
, J. Auslander
and A. Nagar
, Variations on the concept of topological transitivity, Studia Math., 235 (2016)
, 225-249.
doi: 10.4064/sm8553-7-2016.![]() ![]() ![]() |
|
E. Akin
and J. D. Carlson
, Conceptions of topological transitivity, Topology Appl., 159 (2012)
, 2815-2830.
doi: 10.1016/j.topol.2012.04.016.![]() ![]() ![]() |
|
E. Akin
and J. Rautio
, Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017)
, 1-49.
doi: 10.2140/pjm.2017.291.1.![]() ![]() ![]() |
|
N. Aoki, Topological dynamics, in K. Morita and J. Nagata, Topics in General Topology, North Holland, Amsterdam, New York, Oxford, Tokyo, 41 (1989), 625-740.
![]() ![]() |
|
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North Holland, Amsterdam, London, New York, Tokyo, 1994.
![]() ![]() |
|
J. Auslander
, G. Greschonig
and A. Nagar
, Reflections on equicontinuity, Proc. Amer. Math. Soc., 142 (2014)
, 3129-3137.
doi: 10.1090/S0002-9939-2014-12034-X.![]() ![]() ![]() |
|
M. Awartani
and S. Elaydi
, An extension of chaotic dynamics to general topological spaces, Panamer. Math. J., 10 (2000)
, 61-71.
![]() ![]() |
|
J. Banks
and S. Brett
, A note on equivalent definitions of topological transitivity, Discrete Contin. Dyn. Syst., 33 (2013)
, 1293-1296.
![]() ![]() |
|
J. Banks
, J. Brooks
, G. Cairns
, G. Davis
and P. Stace
, On Devaney's definition of chaos, Amer. Math. Month., 99 (1992)
, 332-334.
doi: 10.2307/2324899.![]() ![]() ![]() |
|
A. D. Barwell,
ω-Limit Sets of Discrete Dynamical Systems, Ph. D. Dissertation, The University of Birmingham, 2010.
![]() |
|
A. D. Barwell
, C. Good
and P. Oprocha
, Shadowing and expansivity in subspaces, Fund. Math., 219 (2012)
, 223-243.
doi: 10.4064/fm219-3-2.![]() ![]() ![]() |
|
A. D. Barwell
, C. Good
, P. Oprocha
and B. Raines
, Characterizations of ω-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013)
, 1819-1833.
![]() ![]() |
|
N. C. Bernardes
and U. B. Darji
, Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012)
, 1655-1680.
doi: 10.1016/j.aim.2012.05.024.![]() ![]() ![]() |
|
E. Bilokopytov
and S. F. Kolyada
, Transitive maps on topological spaces, Ukrainian Math. J., 65 (2014)
, 1293-1318.
doi: 10.1007/s11253-014-0860-8.![]() ![]() ![]() |
|
W. R. Brian, Abstract omega-limit sets, preprint, Available from: https://wrbrian.files.wordpress.com/2012/01/omegalimitsets.pdf.
![]() |
|
T. A. Brown
and W. W. Comfort
, New method for expansion and contraction maps in uniform spaces, Proc. Amer. Math. Soc., 11 (1960)
, 483-486.
doi: 10.1090/S0002-9939-1960-0113210-2.![]() ![]() ![]() |
|
B. F. Bryant
, On expansive homeomorphisms, Pacific J. Math., 10 (1960)
, 1163-1167.
doi: 10.2140/pjm.1960.10.1163.![]() ![]() ![]() |
|
T. Ceccherini-Silberstein
and M. Coornaert
, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst., 19 (2013)
, 349-357.
doi: 10.1007/s10883-013-9182-7.![]() ![]() ![]() |
|
M. Edelstein
, On nonexpansive mappings of uniform spaces, Indag. Math., 27 (1965)
, 47-51.
![]() ![]() |
|
R. Engelking, General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989.
![]() ![]() |
|
L. Fernández
and C. Good
, Shadowing for induced maps of hyperspaces, Fund. Math., 235 (2016)
, 277-286.
doi: 10.4064/fm136-2-2016.![]() ![]() ![]() |
|
E. Glasner
and B. Weiss
, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993)
, 1067-1075.
doi: 10.1088/0951-7715/6/6/014.![]() ![]() ![]() |
|
B. M. Hood
, Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974)
, 633-641.
![]() ![]() |
|
W. Huang, S. Kolyada and G. Zhang,
Analogues of Auslander-Yorke the-orems for multi-sensitivity, Ergodic Theory Dynamical Systems, published online on 22 September 2016.
![]() |
|
X. Huang
, F. Zeng
and G. Zhang
, Semi-openness and almost-openness of induced mappings, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005)
, 21-26.
doi: 10.1007/s11766-005-0032-6.![]() ![]() ![]() |
|
W. J. Kammerer
and R. M. Kasriel
, On contractive mappings in uniform spaces, Proc. Amer. Math. Soc., 15 (1964)
, 288-290.
doi: 10.1090/S0002-9939-1964-0159307-6.![]() ![]() ![]() |
|
C. M. Lee
, A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc., 226 (1977)
, 147-159.
doi: 10.1090/S0002-9947-1977-0428315-3.![]() ![]() ![]() |
|
E. Marczewski
, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math., 34 (1947)
, 127-143.
doi: 10.4064/fm-34-1-127-143.![]() ![]() ![]() |
|
E. Michael
, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951)
, 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4.![]() ![]() ![]() |
|
C. A. Morales
and V. Sirvent
, Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc., 368 (2016)
, 5399-5414.
![]() ![]() |
|
W. L. Reddy
, Expanding maps on compact metric spaces, Topology Appl., 13 (1982)
, 327-334.
doi: 10.1016/0166-8641(82)90040-2.![]() ![]() ![]() |
|
F. Rhodes
, A generalization of isometries to uniform spaces, Proc. Cambridge Philos. Soc., 52 (1956)
, 399-405.
doi: 10.1017/S0305004100031406.![]() ![]() ![]() |
|
S. Ruette,
Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.
![]() ![]() |
|
S. Silverman
, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992)
, 353-375.
doi: 10.1216/rmjm/1181072815.![]() ![]() ![]() |
|
M. Vellekoop
and R. Berglund
, On intervals, transitivity =chaos, Amer. Math. Monthly, 101 (1994)
, 353-355.
doi: 10.2307/2975629.![]() ![]() ![]() |
|
T. Wang
, J. Yin
and Q. Yan
, Several transitive properties and Devaney's chaos, Acta Math. Sin. (Engl. Ser.), 32 (2016)
, 373-383.
doi: 10.1007/s10114-016-5050-1.![]() ![]() ![]() |
|
Y. Wang
, G. Wei
, W. H. Campbell
and S. Bourquin
, A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos Solitons Fractals, 41 (2009)
, 1708-1717.
doi: 10.1016/j.chaos.2008.07.014.![]() ![]() ![]() |
|
S. Willard,
General Topology, Addison-Wesley, Reading, Massachusetts; London, 1970.
![]() ![]() |
|
K. Yan
and F. Zend
, Topological entropy, pseudo-orbits and uniform spaces, Topology Appl., 210 (2016)
, 168-182.
doi: 10.1016/j.topol.2016.07.016.![]() ![]() ![]() |