March  2018, 38(3): 1007-1031. doi: 10.3934/dcds.2018043

What is topological about topological dynamics?

1. 

School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK

2. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510. México

* Corresponding author

Received  September 2016 Revised  September 2017 Published  December 2017

Fund Project: The first author gratefully acknowledge support from the European Union through the H2020-MSCA-IF-2014 project ShadOmIC (SEP-210195797). The second named author was partially supported by DGAPA, UNAM. This author thanks The University of Birmingham, UK, for the support given during this research.

We consider various notions from the theory of dynamical systems from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. These Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definition stated in terms of a metric in compact metric spaces.

We show for example that in a Tychonoff space, transitivity and dense periodic points imply (uniform) sensitivity to initial conditions. We generalise Bryant's result that a compact Hausdorff space admitting a $c$-expansive homeomorphism in the obvious uniform sense is metrizable. We study versions of shadowing, generalising a number of well-known results to the topological setting, and internal chain transitivity, showing for example that $ω$-limit sets are (uniform) internally chain transitive and weak incompressibility is equivalent to (uniform) internal chain transitivity in compact spaces.

Citation: Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043
References:
[1]

E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics (1), Amer. Math. Soc., Providence, RI, 1993.  Google Scholar

[2]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 5 (1996), 25-40.  Google Scholar

[3]

E. AkinJ. Auslander and A. Nagar, Variations on the concept of topological transitivity, Studia Math., 235 (2016), 225-249.  doi: 10.4064/sm8553-7-2016.  Google Scholar

[4]

E. Akin and J. D. Carlson, Conceptions of topological transitivity, Topology Appl., 159 (2012), 2815-2830.  doi: 10.1016/j.topol.2012.04.016.  Google Scholar

[5]

E. Akin and J. Rautio, Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017), 1-49.  doi: 10.2140/pjm.2017.291.1.  Google Scholar

[6]

N. Aoki, Topological dynamics, in K. Morita and J. Nagata, Topics in General Topology, North Holland, Amsterdam, New York, Oxford, Tokyo, 41 (1989), 625-740.  Google Scholar

[7]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North Holland, Amsterdam, London, New York, Tokyo, 1994.  Google Scholar

[8]

J. AuslanderG. Greschonig and A. Nagar, Reflections on equicontinuity, Proc. Amer. Math. Soc., 142 (2014), 3129-3137.  doi: 10.1090/S0002-9939-2014-12034-X.  Google Scholar

[9]

M. Awartani and S. Elaydi, An extension of chaotic dynamics to general topological spaces, Panamer. Math. J., 10 (2000), 61-71.   Google Scholar

[10]

J. Banks and S. Brett, A note on equivalent definitions of topological transitivity, Discrete Contin. Dyn. Syst., 33 (2013), 1293-1296.   Google Scholar

[11]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stace, On Devaney's definition of chaos, Amer. Math. Month., 99 (1992), 332-334.  doi: 10.2307/2324899.  Google Scholar

[12]

A. D. Barwell, ω-Limit Sets of Discrete Dynamical Systems, Ph. D. Dissertation, The University of Birmingham, 2010. Google Scholar

[13]

A. D. BarwellC. Good and P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223-243.  doi: 10.4064/fm219-3-2.  Google Scholar

[14]

A. D. BarwellC. GoodP. Oprocha and B. Raines, Characterizations of ω-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.   Google Scholar

[15]

N. C. Bernardes and U. B. Darji, Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.  doi: 10.1016/j.aim.2012.05.024.  Google Scholar

[16]

E. Bilokopytov and S. F. Kolyada, Transitive maps on topological spaces, Ukrainian Math. J., 65 (2014), 1293-1318.  doi: 10.1007/s11253-014-0860-8.  Google Scholar

[17]

W. R. Brian, Abstract omega-limit sets, preprint, Available from: https://wrbrian.files.wordpress.com/2012/01/omegalimitsets.pdf. Google Scholar

[18]

T. A. Brown and W. W. Comfort, New method for expansion and contraction maps in uniform spaces, Proc. Amer. Math. Soc., 11 (1960), 483-486.  doi: 10.1090/S0002-9939-1960-0113210-2.  Google Scholar

[19]

B. F. Bryant, On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167.  doi: 10.2140/pjm.1960.10.1163.  Google Scholar

[20]

T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst., 19 (2013), 349-357.  doi: 10.1007/s10883-013-9182-7.  Google Scholar

[21]

M. Edelstein, On nonexpansive mappings of uniform spaces, Indag. Math., 27 (1965), 47-51.   Google Scholar

[22]

R. Engelking, General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989.  Google Scholar

[23]

L. Fernández and C. Good, Shadowing for induced maps of hyperspaces, Fund. Math., 235 (2016), 277-286.  doi: 10.4064/fm136-2-2016.  Google Scholar

[24]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[25]

B. M. Hood, Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974), 633-641.   Google Scholar

[26]

W. Huang, S. Kolyada and G. Zhang, Analogues of Auslander-Yorke the-orems for multi-sensitivity, Ergodic Theory Dynamical Systems, published online on 22 September 2016. Google Scholar

[27]

X. HuangF. Zeng and G. Zhang, Semi-openness and almost-openness of induced mappings, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005), 21-26.  doi: 10.1007/s11766-005-0032-6.  Google Scholar

[28]

W. J. Kammerer and R. M. Kasriel, On contractive mappings in uniform spaces, Proc. Amer. Math. Soc., 15 (1964), 288-290.  doi: 10.1090/S0002-9939-1964-0159307-6.  Google Scholar

[29]

C. M. Lee, A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc., 226 (1977), 147-159.  doi: 10.1090/S0002-9947-1977-0428315-3.  Google Scholar

[30]

E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math., 34 (1947), 127-143.  doi: 10.4064/fm-34-1-127-143.  Google Scholar

[31]

E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.  doi: 10.1090/S0002-9947-1951-0042109-4.  Google Scholar

[32]

C. A. Morales and V. Sirvent, Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc., 368 (2016), 5399-5414.   Google Scholar

[33]

W. L. Reddy, Expanding maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.  doi: 10.1016/0166-8641(82)90040-2.  Google Scholar

[34]

F. Rhodes, A generalization of isometries to uniform spaces, Proc. Cambridge Philos. Soc., 52 (1956), 399-405.  doi: 10.1017/S0305004100031406.  Google Scholar

[35]

S. Ruette, Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[36]

S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375.  doi: 10.1216/rmjm/1181072815.  Google Scholar

[37]

M. Vellekoop and R. Berglund, On intervals, transitivity =chaos, Amer. Math. Monthly, 101 (1994), 353-355.  doi: 10.2307/2975629.  Google Scholar

[38]

T. WangJ. Yin and Q. Yan, Several transitive properties and Devaney's chaos, Acta Math. Sin. (Engl. Ser.), 32 (2016), 373-383.  doi: 10.1007/s10114-016-5050-1.  Google Scholar

[39]

Y. WangG. WeiW. H. Campbell and S. Bourquin, A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos Solitons Fractals, 41 (2009), 1708-1717.  doi: 10.1016/j.chaos.2008.07.014.  Google Scholar

[40]

S. Willard, General Topology, Addison-Wesley, Reading, Massachusetts; London, 1970.  Google Scholar

[41]

K. Yan and F. Zend, Topological entropy, pseudo-orbits and uniform spaces, Topology Appl., 210 (2016), 168-182.  doi: 10.1016/j.topol.2016.07.016.  Google Scholar

show all references

References:
[1]

E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics (1), Amer. Math. Soc., Providence, RI, 1993.  Google Scholar

[2]

E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 5 (1996), 25-40.  Google Scholar

[3]

E. AkinJ. Auslander and A. Nagar, Variations on the concept of topological transitivity, Studia Math., 235 (2016), 225-249.  doi: 10.4064/sm8553-7-2016.  Google Scholar

[4]

E. Akin and J. D. Carlson, Conceptions of topological transitivity, Topology Appl., 159 (2012), 2815-2830.  doi: 10.1016/j.topol.2012.04.016.  Google Scholar

[5]

E. Akin and J. Rautio, Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017), 1-49.  doi: 10.2140/pjm.2017.291.1.  Google Scholar

[6]

N. Aoki, Topological dynamics, in K. Morita and J. Nagata, Topics in General Topology, North Holland, Amsterdam, New York, Oxford, Tokyo, 41 (1989), 625-740.  Google Scholar

[7]

N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North Holland, Amsterdam, London, New York, Tokyo, 1994.  Google Scholar

[8]

J. AuslanderG. Greschonig and A. Nagar, Reflections on equicontinuity, Proc. Amer. Math. Soc., 142 (2014), 3129-3137.  doi: 10.1090/S0002-9939-2014-12034-X.  Google Scholar

[9]

M. Awartani and S. Elaydi, An extension of chaotic dynamics to general topological spaces, Panamer. Math. J., 10 (2000), 61-71.   Google Scholar

[10]

J. Banks and S. Brett, A note on equivalent definitions of topological transitivity, Discrete Contin. Dyn. Syst., 33 (2013), 1293-1296.   Google Scholar

[11]

J. BanksJ. BrooksG. CairnsG. Davis and P. Stace, On Devaney's definition of chaos, Amer. Math. Month., 99 (1992), 332-334.  doi: 10.2307/2324899.  Google Scholar

[12]

A. D. Barwell, ω-Limit Sets of Discrete Dynamical Systems, Ph. D. Dissertation, The University of Birmingham, 2010. Google Scholar

[13]

A. D. BarwellC. Good and P. Oprocha, Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223-243.  doi: 10.4064/fm219-3-2.  Google Scholar

[14]

A. D. BarwellC. GoodP. Oprocha and B. Raines, Characterizations of ω-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.   Google Scholar

[15]

N. C. Bernardes and U. B. Darji, Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.  doi: 10.1016/j.aim.2012.05.024.  Google Scholar

[16]

E. Bilokopytov and S. F. Kolyada, Transitive maps on topological spaces, Ukrainian Math. J., 65 (2014), 1293-1318.  doi: 10.1007/s11253-014-0860-8.  Google Scholar

[17]

W. R. Brian, Abstract omega-limit sets, preprint, Available from: https://wrbrian.files.wordpress.com/2012/01/omegalimitsets.pdf. Google Scholar

[18]

T. A. Brown and W. W. Comfort, New method for expansion and contraction maps in uniform spaces, Proc. Amer. Math. Soc., 11 (1960), 483-486.  doi: 10.1090/S0002-9939-1960-0113210-2.  Google Scholar

[19]

B. F. Bryant, On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167.  doi: 10.2140/pjm.1960.10.1163.  Google Scholar

[20]

T. Ceccherini-Silberstein and M. Coornaert, Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst., 19 (2013), 349-357.  doi: 10.1007/s10883-013-9182-7.  Google Scholar

[21]

M. Edelstein, On nonexpansive mappings of uniform spaces, Indag. Math., 27 (1965), 47-51.   Google Scholar

[22]

R. Engelking, General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989.  Google Scholar

[23]

L. Fernández and C. Good, Shadowing for induced maps of hyperspaces, Fund. Math., 235 (2016), 277-286.  doi: 10.4064/fm136-2-2016.  Google Scholar

[24]

E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.  doi: 10.1088/0951-7715/6/6/014.  Google Scholar

[25]

B. M. Hood, Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974), 633-641.   Google Scholar

[26]

W. Huang, S. Kolyada and G. Zhang, Analogues of Auslander-Yorke the-orems for multi-sensitivity, Ergodic Theory Dynamical Systems, published online on 22 September 2016. Google Scholar

[27]

X. HuangF. Zeng and G. Zhang, Semi-openness and almost-openness of induced mappings, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005), 21-26.  doi: 10.1007/s11766-005-0032-6.  Google Scholar

[28]

W. J. Kammerer and R. M. Kasriel, On contractive mappings in uniform spaces, Proc. Amer. Math. Soc., 15 (1964), 288-290.  doi: 10.1090/S0002-9939-1964-0159307-6.  Google Scholar

[29]

C. M. Lee, A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc., 226 (1977), 147-159.  doi: 10.1090/S0002-9947-1977-0428315-3.  Google Scholar

[30]

E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math., 34 (1947), 127-143.  doi: 10.4064/fm-34-1-127-143.  Google Scholar

[31]

E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.  doi: 10.1090/S0002-9947-1951-0042109-4.  Google Scholar

[32]

C. A. Morales and V. Sirvent, Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc., 368 (2016), 5399-5414.   Google Scholar

[33]

W. L. Reddy, Expanding maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.  doi: 10.1016/0166-8641(82)90040-2.  Google Scholar

[34]

F. Rhodes, A generalization of isometries to uniform spaces, Proc. Cambridge Philos. Soc., 52 (1956), 399-405.  doi: 10.1017/S0305004100031406.  Google Scholar

[35]

S. Ruette, Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[36]

S. Silverman, On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375.  doi: 10.1216/rmjm/1181072815.  Google Scholar

[37]

M. Vellekoop and R. Berglund, On intervals, transitivity =chaos, Amer. Math. Monthly, 101 (1994), 353-355.  doi: 10.2307/2975629.  Google Scholar

[38]

T. WangJ. Yin and Q. Yan, Several transitive properties and Devaney's chaos, Acta Math. Sin. (Engl. Ser.), 32 (2016), 373-383.  doi: 10.1007/s10114-016-5050-1.  Google Scholar

[39]

Y. WangG. WeiW. H. Campbell and S. Bourquin, A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos Solitons Fractals, 41 (2009), 1708-1717.  doi: 10.1016/j.chaos.2008.07.014.  Google Scholar

[40]

S. Willard, General Topology, Addison-Wesley, Reading, Massachusetts; London, 1970.  Google Scholar

[41]

K. Yan and F. Zend, Topological entropy, pseudo-orbits and uniform spaces, Topology Appl., 210 (2016), 168-182.  doi: 10.1016/j.topol.2016.07.016.  Google Scholar

[1]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[2]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[3]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[4]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[5]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[6]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[7]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[8]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[9]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[10]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[13]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[14]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[15]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[16]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[17]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[18]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[19]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[20]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (213)
  • HTML views (218)
  • Cited by (10)

Other articles
by authors

[Back to Top]