-
Previous Article
Dynamics in dimension zero A survey
- DCDS Home
- This Issue
-
Next Article
Exponential multiple mixing for some partially hyperbolic flows on products of $ {\rm{PSL}}(2, \mathbb{R})$
What is topological about topological dynamics?
1. | School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK |
2. | Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510. México |
We consider various notions from the theory of dynamical systems from a topological point of view. Many of these notions can be sensibly defined either in terms of (finite) open covers or uniformities. These Hausdorff or uniform versions coincide in compact Hausdorff spaces and are equivalent to the standard definition stated in terms of a metric in compact metric spaces.
We show for example that in a Tychonoff space, transitivity and dense periodic points imply (uniform) sensitivity to initial conditions. We generalise Bryant's result that a compact Hausdorff space admitting a $c$-expansive homeomorphism in the obvious uniform sense is metrizable. We study versions of shadowing, generalising a number of well-known results to the topological setting, and internal chain transitivity, showing for example that $ω$-limit sets are (uniform) internally chain transitive and weak incompressibility is equivalent to (uniform) internal chain transitivity in compact spaces.
References:
[1] |
E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics (1), Amer. Math. Soc., Providence, RI, 1993. |
[2] |
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 5 (1996), 25-40. |
[3] |
E. Akin, J. Auslander and A. Nagar,
Variations on the concept of topological transitivity, Studia Math., 235 (2016), 225-249.
doi: 10.4064/sm8553-7-2016. |
[4] |
E. Akin and J. D. Carlson,
Conceptions of topological transitivity, Topology Appl., 159 (2012), 2815-2830.
doi: 10.1016/j.topol.2012.04.016. |
[5] |
E. Akin and J. Rautio,
Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017), 1-49.
doi: 10.2140/pjm.2017.291.1. |
[6] |
N. Aoki, Topological dynamics, in K. Morita and J. Nagata, Topics in General Topology, North Holland, Amsterdam, New York, Oxford, Tokyo, 41 (1989), 625-740. |
[7] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North Holland, Amsterdam, London, New York, Tokyo, 1994. |
[8] |
J. Auslander, G. Greschonig and A. Nagar,
Reflections on equicontinuity, Proc. Amer. Math. Soc., 142 (2014), 3129-3137.
doi: 10.1090/S0002-9939-2014-12034-X. |
[9] |
M. Awartani and S. Elaydi,
An extension of chaotic dynamics to general topological spaces, Panamer. Math. J., 10 (2000), 61-71.
|
[10] |
J. Banks and S. Brett,
A note on equivalent definitions of topological transitivity, Discrete Contin. Dyn. Syst., 33 (2013), 1293-1296.
|
[11] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stace,
On Devaney's definition of chaos, Amer. Math. Month., 99 (1992), 332-334.
doi: 10.2307/2324899. |
[12] |
A. D. Barwell, ω-Limit Sets of Discrete Dynamical Systems, Ph. D. Dissertation, The University of Birmingham, 2010. Google Scholar |
[13] |
A. D. Barwell, C. Good and P. Oprocha,
Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223-243.
doi: 10.4064/fm219-3-2. |
[14] |
A. D. Barwell, C. Good, P. Oprocha and B. Raines,
Characterizations of ω-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
|
[15] |
N. C. Bernardes and U. B. Darji,
Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.
doi: 10.1016/j.aim.2012.05.024. |
[16] |
E. Bilokopytov and S. F. Kolyada,
Transitive maps on topological spaces, Ukrainian Math. J., 65 (2014), 1293-1318.
doi: 10.1007/s11253-014-0860-8. |
[17] |
W. R. Brian, Abstract omega-limit sets, preprint, Available from: https://wrbrian.files.wordpress.com/2012/01/omegalimitsets.pdf. Google Scholar |
[18] |
T. A. Brown and W. W. Comfort,
New method for expansion and contraction maps in uniform spaces, Proc. Amer. Math. Soc., 11 (1960), 483-486.
doi: 10.1090/S0002-9939-1960-0113210-2. |
[19] |
B. F. Bryant,
On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167.
doi: 10.2140/pjm.1960.10.1163. |
[20] |
T. Ceccherini-Silberstein and M. Coornaert,
Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst., 19 (2013), 349-357.
doi: 10.1007/s10883-013-9182-7. |
[21] |
M. Edelstein,
On nonexpansive mappings of uniform spaces, Indag. Math., 27 (1965), 47-51.
|
[22] |
R. Engelking, General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989. |
[23] |
L. Fernández and C. Good,
Shadowing for induced maps of hyperspaces, Fund. Math., 235 (2016), 277-286.
doi: 10.4064/fm136-2-2016. |
[24] |
E. Glasner and B. Weiss,
Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.
doi: 10.1088/0951-7715/6/6/014. |
[25] |
B. M. Hood,
Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974), 633-641.
|
[26] |
W. Huang, S. Kolyada and G. Zhang, Analogues of Auslander-Yorke the-orems for multi-sensitivity, Ergodic Theory Dynamical Systems, published online on 22 September 2016. Google Scholar |
[27] |
X. Huang, F. Zeng and G. Zhang,
Semi-openness and almost-openness of induced mappings, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005), 21-26.
doi: 10.1007/s11766-005-0032-6. |
[28] |
W. J. Kammerer and R. M. Kasriel,
On contractive mappings in uniform spaces, Proc. Amer. Math. Soc., 15 (1964), 288-290.
doi: 10.1090/S0002-9939-1964-0159307-6. |
[29] |
C. M. Lee,
A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc., 226 (1977), 147-159.
doi: 10.1090/S0002-9947-1977-0428315-3. |
[30] |
E. Marczewski,
Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math., 34 (1947), 127-143.
doi: 10.4064/fm-34-1-127-143. |
[31] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[32] |
C. A. Morales and V. Sirvent,
Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc., 368 (2016), 5399-5414.
|
[33] |
W. L. Reddy,
Expanding maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.
doi: 10.1016/0166-8641(82)90040-2. |
[34] |
F. Rhodes,
A generalization of isometries to uniform spaces, Proc. Cambridge Philos. Soc., 52 (1956), 399-405.
doi: 10.1017/S0305004100031406. |
[35] |
S. Ruette,
Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017. |
[36] |
S. Silverman,
On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375.
doi: 10.1216/rmjm/1181072815. |
[37] |
M. Vellekoop and R. Berglund,
On intervals, transitivity =chaos, Amer. Math. Monthly, 101 (1994), 353-355.
doi: 10.2307/2975629. |
[38] |
T. Wang, J. Yin and Q. Yan,
Several transitive properties and Devaney's chaos, Acta Math. Sin. (Engl. Ser.), 32 (2016), 373-383.
doi: 10.1007/s10114-016-5050-1. |
[39] |
Y. Wang, G. Wei, W. H. Campbell and S. Bourquin,
A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos Solitons Fractals, 41 (2009), 1708-1717.
doi: 10.1016/j.chaos.2008.07.014. |
[40] |
S. Willard,
General Topology, Addison-Wesley, Reading, Massachusetts; London, 1970. |
[41] |
K. Yan and F. Zend,
Topological entropy, pseudo-orbits and uniform spaces, Topology Appl., 210 (2016), 168-182.
doi: 10.1016/j.topol.2016.07.016. |
show all references
References:
[1] |
E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics (1), Amer. Math. Soc., Providence, RI, 1993. |
[2] |
E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in Convergence in Ergodic Theory and Probability, (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., de Gruyter, Berlin, 5 (1996), 25-40. |
[3] |
E. Akin, J. Auslander and A. Nagar,
Variations on the concept of topological transitivity, Studia Math., 235 (2016), 225-249.
doi: 10.4064/sm8553-7-2016. |
[4] |
E. Akin and J. D. Carlson,
Conceptions of topological transitivity, Topology Appl., 159 (2012), 2815-2830.
doi: 10.1016/j.topol.2012.04.016. |
[5] |
E. Akin and J. Rautio,
Chain transitive homeomorphisms on a space: All or none, Pacific J. Math., 291 (2017), 1-49.
doi: 10.2140/pjm.2017.291.1. |
[6] |
N. Aoki, Topological dynamics, in K. Morita and J. Nagata, Topics in General Topology, North Holland, Amsterdam, New York, Oxford, Tokyo, 41 (1989), 625-740. |
[7] |
N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems, North Holland, Amsterdam, London, New York, Tokyo, 1994. |
[8] |
J. Auslander, G. Greschonig and A. Nagar,
Reflections on equicontinuity, Proc. Amer. Math. Soc., 142 (2014), 3129-3137.
doi: 10.1090/S0002-9939-2014-12034-X. |
[9] |
M. Awartani and S. Elaydi,
An extension of chaotic dynamics to general topological spaces, Panamer. Math. J., 10 (2000), 61-71.
|
[10] |
J. Banks and S. Brett,
A note on equivalent definitions of topological transitivity, Discrete Contin. Dyn. Syst., 33 (2013), 1293-1296.
|
[11] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stace,
On Devaney's definition of chaos, Amer. Math. Month., 99 (1992), 332-334.
doi: 10.2307/2324899. |
[12] |
A. D. Barwell, ω-Limit Sets of Discrete Dynamical Systems, Ph. D. Dissertation, The University of Birmingham, 2010. Google Scholar |
[13] |
A. D. Barwell, C. Good and P. Oprocha,
Shadowing and expansivity in subspaces, Fund. Math., 219 (2012), 223-243.
doi: 10.4064/fm219-3-2. |
[14] |
A. D. Barwell, C. Good, P. Oprocha and B. Raines,
Characterizations of ω-limit sets in topologically hyperbolic systems, Discrete Contin. Dyn. Syst., 33 (2013), 1819-1833.
|
[15] |
N. C. Bernardes and U. B. Darji,
Graph theoretic structure of maps of the Cantor space, Adv. Math., 231 (2012), 1655-1680.
doi: 10.1016/j.aim.2012.05.024. |
[16] |
E. Bilokopytov and S. F. Kolyada,
Transitive maps on topological spaces, Ukrainian Math. J., 65 (2014), 1293-1318.
doi: 10.1007/s11253-014-0860-8. |
[17] |
W. R. Brian, Abstract omega-limit sets, preprint, Available from: https://wrbrian.files.wordpress.com/2012/01/omegalimitsets.pdf. Google Scholar |
[18] |
T. A. Brown and W. W. Comfort,
New method for expansion and contraction maps in uniform spaces, Proc. Amer. Math. Soc., 11 (1960), 483-486.
doi: 10.1090/S0002-9939-1960-0113210-2. |
[19] |
B. F. Bryant,
On expansive homeomorphisms, Pacific J. Math., 10 (1960), 1163-1167.
doi: 10.2140/pjm.1960.10.1163. |
[20] |
T. Ceccherini-Silberstein and M. Coornaert,
Sensitivity and Devaney's chaos in uniform spaces, J. Dyn. Control Syst., 19 (2013), 349-357.
doi: 10.1007/s10883-013-9182-7. |
[21] |
M. Edelstein,
On nonexpansive mappings of uniform spaces, Indag. Math., 27 (1965), 47-51.
|
[22] |
R. Engelking, General Topology, Sigma series in pure mathematics, Vol. 6, Heldermann, Berlin, 1989. |
[23] |
L. Fernández and C. Good,
Shadowing for induced maps of hyperspaces, Fund. Math., 235 (2016), 277-286.
doi: 10.4064/fm136-2-2016. |
[24] |
E. Glasner and B. Weiss,
Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.
doi: 10.1088/0951-7715/6/6/014. |
[25] |
B. M. Hood,
Topological entropy and uniform spaces, J. London Math. Soc., 8 (1974), 633-641.
|
[26] |
W. Huang, S. Kolyada and G. Zhang, Analogues of Auslander-Yorke the-orems for multi-sensitivity, Ergodic Theory Dynamical Systems, published online on 22 September 2016. Google Scholar |
[27] |
X. Huang, F. Zeng and G. Zhang,
Semi-openness and almost-openness of induced mappings, Appl. Math. J. Chinese Univ. Ser. B, 20 (2005), 21-26.
doi: 10.1007/s11766-005-0032-6. |
[28] |
W. J. Kammerer and R. M. Kasriel,
On contractive mappings in uniform spaces, Proc. Amer. Math. Soc., 15 (1964), 288-290.
doi: 10.1090/S0002-9939-1964-0159307-6. |
[29] |
C. M. Lee,
A development of contraction mapping principles on Hausdorff uniform spaces, Trans. Amer. Math. Soc., 226 (1977), 147-159.
doi: 10.1090/S0002-9947-1977-0428315-3. |
[30] |
E. Marczewski,
Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math., 34 (1947), 127-143.
doi: 10.4064/fm-34-1-127-143. |
[31] |
E. Michael,
Topologies on spaces of subsets, Trans. Amer. Math. Soc., 71 (1951), 152-182.
doi: 10.1090/S0002-9947-1951-0042109-4. |
[32] |
C. A. Morales and V. Sirvent,
Expansivity for measures on uniform spaces, Trans. Amer. Math. Soc., 368 (2016), 5399-5414.
|
[33] |
W. L. Reddy,
Expanding maps on compact metric spaces, Topology Appl., 13 (1982), 327-334.
doi: 10.1016/0166-8641(82)90040-2. |
[34] |
F. Rhodes,
A generalization of isometries to uniform spaces, Proc. Cambridge Philos. Soc., 52 (1956), 399-405.
doi: 10.1017/S0305004100031406. |
[35] |
S. Ruette,
Chaos on the Interval, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017. |
[36] |
S. Silverman,
On maps with dense orbits and the definition of chaos, Rocky Mountain J. Math., 22 (1992), 353-375.
doi: 10.1216/rmjm/1181072815. |
[37] |
M. Vellekoop and R. Berglund,
On intervals, transitivity =chaos, Amer. Math. Monthly, 101 (1994), 353-355.
doi: 10.2307/2975629. |
[38] |
T. Wang, J. Yin and Q. Yan,
Several transitive properties and Devaney's chaos, Acta Math. Sin. (Engl. Ser.), 32 (2016), 373-383.
doi: 10.1007/s10114-016-5050-1. |
[39] |
Y. Wang, G. Wei, W. H. Campbell and S. Bourquin,
A framework of induced hyperspace dynamical systems equipped with the hit-or-miss topology, Chaos Solitons Fractals, 41 (2009), 1708-1717.
doi: 10.1016/j.chaos.2008.07.014. |
[40] |
S. Willard,
General Topology, Addison-Wesley, Reading, Massachusetts; London, 1970. |
[41] |
K. Yan and F. Zend,
Topological entropy, pseudo-orbits and uniform spaces, Topology Appl., 210 (2016), 168-182.
doi: 10.1016/j.topol.2016.07.016. |
[1] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[2] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[3] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[4] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[5] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[6] |
Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020399 |
[7] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[8] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[9] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[10] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[11] |
Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266 |
[12] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[13] |
Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020173 |
[14] |
Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 |
[15] |
Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 |
[16] |
The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013 |
[17] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[18] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[19] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[20] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]