We consider a threshold-type algorithm for curvature-dependent motions (CDM for short) of hypersurfaces. This algorithm was numerically studied by Kimura - Notsu [
Citation: |
[1] | G. Barles and C. Georgelin, A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500. doi: 10.1137/0732020. |
[2] | J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992. |
[3] | A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218. |
[4] | A. Chambolle and M. Novaga, Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844. doi: 10.1142/S0218202507002121. |
[5] | A. Chambolle and M. Novaga, Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300. |
[6] | M.G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67. doi: 10.1090/S0273-0979-1992-00266-5. |
[7] | S. Esedoḡlu, S.J. Ruuth and R. Tsai, Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042. doi: 10.1016/j.jcp.2009.10.002. |
[8] | T. Eto, Y. Giga and K. Ishii, An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084. |
[9] | L.C. Evans, Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557. doi: 10.1512/iumj.1993.42.42024. |
[10] | L.C. Evans and J. Spruck, Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332. doi: 10.1090/S0002-9947-1992-1068927-8. |
[11] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. |
[12] | K. Ishii and M. Kimura, Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522. doi: 10.4171/IFB/371. |
[13] | M. Kimura and H. Notsu, A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446. doi: 10.1007/BF03167487. |
[14] | S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004. |
[15] | F. Leoni, Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131. doi: 10.1137/S0036142900370459. |
[16] | R.Z. Mohammad and K. Švadlenka, Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988. doi: 10.3934/dcdss.2015.8.969. |
[17] | L. Vivier, Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288. |
Graphs of
Graphs of of