
-
Previous Article
On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces
- DCDS Home
- This Issue
-
Next Article
The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations
Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces
1. | Graduate School of Maritime Sciences, Kobe University, Higashinada, Kobe 658-0022, Japan |
2. | Yasuna Machine Designing, Hojo-Umehara, Himeji 670-0945, Japan |
We consider a threshold-type algorithm for curvature-dependent motions (CDM for short) of hypersurfaces. This algorithm was numerically studied by Kimura - Notsu [
References:
[1] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.
doi: 10.1137/0732020. |
[2] |
J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992. Google Scholar |
[3] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
|
[4] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[5] |
A. Chambolle and M. Novaga,
Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.
|
[6] |
M.G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
S. Esedoḡlu, S.J. Ruuth and R. Tsai,
Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042.
doi: 10.1016/j.jcp.2009.10.002. |
[8] |
T. Eto, Y. Giga and K. Ishii,
An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.
|
[9] |
L.C. Evans,
Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557.
doi: 10.1512/iumj.1993.42.42024. |
[10] |
L.C. Evans and J. Spruck,
Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332.
doi: 10.1090/S0002-9947-1992-1068927-8. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. |
[12] |
K. Ishii and M. Kimura,
Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522.
doi: 10.4171/IFB/371. |
[13] |
M. Kimura and H. Notsu,
A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446.
doi: 10.1007/BF03167487. |
[14] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004. |
[15] |
F. Leoni,
Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131.
doi: 10.1137/S0036142900370459. |
[16] |
R.Z. Mohammad and K. Švadlenka,
Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988.
doi: 10.3934/dcdss.2015.8.969. |
[17] |
L. Vivier,
Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.
|
show all references
References:
[1] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.
doi: 10.1137/0732020. |
[2] |
J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992. Google Scholar |
[3] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
|
[4] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[5] |
A. Chambolle and M. Novaga,
Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.
|
[6] |
M.G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
S. Esedoḡlu, S.J. Ruuth and R. Tsai,
Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042.
doi: 10.1016/j.jcp.2009.10.002. |
[8] |
T. Eto, Y. Giga and K. Ishii,
An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.
|
[9] |
L.C. Evans,
Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557.
doi: 10.1512/iumj.1993.42.42024. |
[10] |
L.C. Evans and J. Spruck,
Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332.
doi: 10.1090/S0002-9947-1992-1068927-8. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. |
[12] |
K. Ishii and M. Kimura,
Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522.
doi: 10.4171/IFB/371. |
[13] |
M. Kimura and H. Notsu,
A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446.
doi: 10.1007/BF03167487. |
[14] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004. |
[15] |
F. Leoni,
Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131.
doi: 10.1137/S0036142900370459. |
[16] |
R.Z. Mohammad and K. Švadlenka,
Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988.
doi: 10.3934/dcdss.2015.8.969. |
[17] |
L. Vivier,
Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.
|


[1] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[2] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[3] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[4] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[5] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[6] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[7] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[8] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[9] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[10] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[11] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[12] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[13] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
[16] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[17] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[18] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[19] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[20] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]