
-
Previous Article
On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces
- DCDS Home
- This Issue
-
Next Article
The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations
Remarks on the convergence of an algorithm for curvature-dependent motions of hypersurfaces
1. | Graduate School of Maritime Sciences, Kobe University, Higashinada, Kobe 658-0022, Japan |
2. | Yasuna Machine Designing, Hojo-Umehara, Himeji 670-0945, Japan |
We consider a threshold-type algorithm for curvature-dependent motions (CDM for short) of hypersurfaces. This algorithm was numerically studied by Kimura - Notsu [
References:
[1] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.
doi: 10.1137/0732020. |
[2] |
J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992. |
[3] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
|
[4] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[5] |
A. Chambolle and M. Novaga,
Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.
|
[6] |
M.G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
S. Esedoḡlu, S.J. Ruuth and R. Tsai,
Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042.
doi: 10.1016/j.jcp.2009.10.002. |
[8] |
T. Eto, Y. Giga and K. Ishii,
An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.
|
[9] |
L.C. Evans,
Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557.
doi: 10.1512/iumj.1993.42.42024. |
[10] |
L.C. Evans and J. Spruck,
Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332.
doi: 10.1090/S0002-9947-1992-1068927-8. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. |
[12] |
K. Ishii and M. Kimura,
Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522.
doi: 10.4171/IFB/371. |
[13] |
M. Kimura and H. Notsu,
A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446.
doi: 10.1007/BF03167487. |
[14] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004. |
[15] |
F. Leoni,
Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131.
doi: 10.1137/S0036142900370459. |
[16] |
R.Z. Mohammad and K. Švadlenka,
Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988.
doi: 10.3934/dcdss.2015.8.969. |
[17] |
L. Vivier,
Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.
|
show all references
References:
[1] |
G. Barles and C. Georgelin,
A simple proof of convergence for an approximation scheme for computing motion by mean curvature, SIAM J. Numer. Anal., 32 (1995), 484-500.
doi: 10.1137/0732020. |
[2] |
J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, in "Computational Crystal Growers Workshop", J. Taylor ed., Selected Lectures in Math., Amer. Math. Soc., Province, 1992. |
[3] |
A. Chambolle,
An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004), 195-218.
|
[4] |
A. Chambolle and M. Novaga,
Approximation of the anisotropic mean curvature flow, Math. Models Methods Appl. Sci., 17 (2007), 833-844.
doi: 10.1142/S0218202507002121. |
[5] |
A. Chambolle and M. Novaga,
Implicit time discretization of the mean curvature flow with a discontinuous forcing term, Interfaces Free Bound., 10 (2008), 283-300.
|
[6] |
M.G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bull. A. M. S., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
S. Esedoḡlu, S.J. Ruuth and R. Tsai,
Diffusion generated motion using the signed distance function, J. Comp. Phys., 229 (2010), 1017-1042.
doi: 10.1016/j.jcp.2009.10.002. |
[8] |
T. Eto, Y. Giga and K. Ishii,
An area minimizing scheme for anisotropic mean curvature flow, Adv. Differential Equations, 17 (2012), 1031-1084.
|
[9] |
L.C. Evans,
Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J., 42 (1993), 533-557.
doi: 10.1512/iumj.1993.42.42024. |
[10] |
L.C. Evans and J. Spruck,
Motion of level sets by mean curvature Ⅱ, Trans. Amer. Math. Soc., 330 (1992), 321-332.
doi: 10.1090/S0002-9947-1992-1068927-8. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983. |
[12] |
K. Ishii and M. Kimura,
Convergence of a threshold-type algorithm using the signed distance function, Interfaces Free Bound., 18 (2016), 479-522.
doi: 10.4171/IFB/371. |
[13] |
M. Kimura and H. Notsu,
A level set method using the signed distance function, Japan J. Indust. Appl. Math., 19 (2002), 415-446.
doi: 10.1007/BF03167487. |
[14] |
S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, MSJ Memoirs, 13. Mathematical Society of Japan, Tokyo, 2004. |
[15] |
F. Leoni,
Convergence of an approximation scheme for curvature-dependent motion of sets, SIAM J. Numer. Anal., 39 (2001), 1115-1131.
doi: 10.1137/S0036142900370459. |
[16] |
R.Z. Mohammad and K. Švadlenka,
Multiphase volume-preserving interface motion via localized signed distance vector scheme, Discrete and Continuous Dynamical Systems, Series S, 8 (2015), 969-988.
doi: 10.3934/dcdss.2015.8.969. |
[17] |
L. Vivier,
Convergence of an approximation scheme for computing motions with curvature dependent velocities, Differential Integral Equations, 13 (2000), 1263-1288.
|


[1] |
Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039 |
[2] |
Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076 |
[3] |
Xuanhua Peng, Wen Su, Zhimin Zhang. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1967-1986. doi: 10.3934/jimo.2019038 |
[4] |
Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4987-5008. doi: 10.3934/dcds.2021065 |
[5] |
Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 |
[6] |
Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations and Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018 |
[7] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[8] |
Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial and Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333 |
[9] |
Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865 |
[10] |
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199 |
[11] |
Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012 |
[12] |
Armand Bernou. A semigroup approach to the convergence rate of a collisionless gas. Kinetic and Related Models, 2020, 13 (6) : 1071-1106. doi: 10.3934/krm.2020038 |
[13] |
Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic and Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1 |
[14] |
Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503 |
[15] |
Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463 |
[16] |
Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801 |
[17] |
Gianni Di Pillo, Giampaolo Liuzzi, Stefano Lucidi. A primal-dual algorithm for nonlinear programming exploiting negative curvature directions. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 509-528. doi: 10.3934/naco.2011.1.509 |
[18] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control and Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[19] |
Zhengyan Lin, Li-Xin Zhang. Convergence to a self-normalized G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 4-. doi: 10.1186/s41546-017-0013-8 |
[20] |
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]