Uniform hyperbolicity is a strong chaotic property which holds, in particular, for Sinai billiards. In this paper, we consider the case of a nonflat billiard, that is, a Riemannian surface with boundary. Each trajectory follows the geodesic flow in the interior of the billiard, and bounces when it meets the boundary. We give a sufficient condition for a nonflat billiard to be uniformly hyperbolic. As a particular case, we obtain a new criterion to show that a closed surface has an Anosov geodesic flow.
Citation: |
V. I. Arnold and A. Avez, Problémes Ergodiques de la Mécanique Classique, Monographies Internationales de Mathématiques Modernes, No. 9, Gauthier-Villars, Éditeur, Paris, 1967. | |
V. Baladi, M. Demers and C. Liverani, Exponential decay of correlations for finite horizon Sinai billiard flows, Inventiones mathematicae, (2017), 1-139, arXiv: 1506.02836. doi: 10.1007/s00222-017-0745-1. | |
M. Bauer and A. Lopes , A billiard in the hyperbolic plane with decay of correlation of type n-2, Discrete Contin. Dynam. Systems, 3 (1997) , 107-116. | |
N. Chernov and R. Markarian, Chaotic Billiards, vol. 127 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2006, URL http://dx.doi.org/10.1090/surv/127. | |
D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2), 147 (1998), 357-390, URL http://dx.doi.org/10.2307/121012. | |
V. J. Donnay and C. Pugh , Anosov geodesic flows for embedded surfaces, Asterisque, 287 (2003) , 61-69. | |
P. Eberlein, When is a geodesic flow of Anosov type? Ⅰ, Ⅱ, J. Differential Geometry, 8 (1973), 437-463; Ibid., 8 (1973), 565-577. doi: 10.4310/jdg/1214431801. | |
B. Gutkin, U. Smilansky and E. Gutkin, Hyperbolic billiards on surfaces of constant curvature, Comm. Math. Phys., 208 (1999), 65-90, URL http://dx.doi.org/10.1007/s002200050748. | |
J. Hadamard , Les surfaces à courbures opposées et leurs lignes géodésique, J. Math. pures appl., 4 (1898) , 27-73. | |
T. J. Hunt and R. S. MacKay, Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510, URL http://dx.doi.org/10.1088/0951-7715/16/4/318. | |
A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, vol. 54 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1995, URL http://dx.doi.org/10.1017/CBO9780511809187. | |
W. Klingenberg , Riemannian manifolds with geodesic flow of Anosov type, Ann. of Math. (2), 99 (1974) , 1-13. doi: 10.2307/1971011. | |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol Ⅰ, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. | |
M. Kourganoff, Anosov geodesic flows, billiards and linkages, Comm. Math. Phys. , 344 (2016), 831-856, URL http://dx.doi.org/10.1007/s00220-016-2646-3. | |
M. Kourganoff, Embedded surfaces with Anosov geodesic flows, approximating spherical billiards, arXiv preprint. | |
A. Krámli, N. Simányi and D. Szász, Dispersing billiards without focal points on surfaces are ergodic, Comm. Math. Phys., 125 (1989), 439-457, URL http://projecteuclid.org/euclid.cmp/1104179528. | |
C. Liverani, On contact Anosov flows, Ann. of Math. (2), 159 (2004), 1275-1312, URL http://dx.doi.org/10.4007/annals.2004.159.1275. | |
M. Magalhães and M. Pollicott , Geometry and dynamics of planar linkages, Communications in Mathematical Physics, 317 (2013) , 615-634. doi: 10.1007/s00220-012-1521-0. | |
G. P. Paternain, Geodesic Flows, vol. 180 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1999, URL http://dx.doi.org/10.1007/978-1-4612-1600-1. | |
C. Pugh and M. Shub , Ergodicity of Anosov actions, Invent. Math., 15 (1972) , 1-23. doi: 10.1007/BF01418639. | |
J. G. Sinaĭ , Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25 (1970) , 141-192. | |
A. Vetier, Sinaĭ billiard in potential field (construction of stable and unstable fibers), in Limit theorems in probability and statistics, Vol. Ⅰ, Ⅱ (Veszprém, 1982), vol. 36 of Colloq. Math. Soc. J´anos Bolyai, North-Holland, Amsterdam, 1984, 1079-1146. | |
M. Wojtkowski, Invariant families of cones and Lyapunov exponents, Ergodic Theory Dynam. Systems, 5 (1985), 145-161, URL http://dx.doi.org/10.1017/S0143385700002807. | |
P. Zhang, Convex billiards on convex spheres, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 793-816, URL http://dx.doi.org/10.1016/j.anihpc.2016.07.001. |
The billiard reflection law
A grazing collision on a dispersing billiard in
On the left, a dispersing billiard in
Each