\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Soliton solutions for the elastic metric on spaces of curves

  • * Corresponding author: Martin Bauer

    * Corresponding author: Martin Bauer 
Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • In this article we investigate a first order reparametrization-invariant Sobolev metric on the space of immersed curves. Motivated by applications in shape analysis where discretizations of this infinite-dimensional space are needed, we extend this metric to the space of Lipschitz curves, establish the wellposedness of the geodesic equation thereon, and show that the space of piecewise linear curves is a totally geodesic submanifold. Thus, piecewise linear curves are natural finite elements for the discretization of the geodesic equation. Interestingly, geodesics in this space can be seen as soliton solutions of the geodesic equation, which were not known to exist for reparametrization-invariant Sobolev metrics on spaces of curves.

    Mathematics Subject Classification: Primary: 58E10; Secondary: 49M25, 58B20, 58D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A closed geodesic in $P\mathcal I^1_0$ which has self-intersection and changes its winding number (c.f. Example 4.9). See here or here for an animation

    Figure 2.  A closed geodesic in $P\mathcal I^1_0$ which has self-intersection and changes its winding number (c.f. Example 4.9). See here or here for an animation

    Figure 3.  The kernel of the $H^1$ metric (left) compared to a Gaussian kernel (middle) at a specific landmark (right) on the space $\text{Land}$. Dark colors correspond to large values of the kernel. See Remark 6.4 for an interpretation.

    Figure 4.  A geodesic with respect to the LDDMM metric with the same initial condition as in Figure 2. Note that the LDDMM metric avoids landmark collisions; the landmarks never touch. See here or here for an animation

  •   M. Bauer , P. Harms  and  P. W. Michor , Almost local metrics on shape space of hypersurfaces in $ n $-space, SIAM J. Imaging Sci., 5 (2012) , 244-310.  doi: 10.1137/100807983.
      M. Bauer , M. Bruveris , P. Harms  and  J. Moller-Andersen , A numerical framework for Sobolev metrics on the space of curves, SIAM J. Imaging Sci., 10 (2017) , 47-73.  doi: 10.1137/16M1066282.
      M. Bauer , M. Bruveris , S. Marsland  and  P. W. Michor , Constructing reparameterization invariant metrics on spaces of plane curves, Differential Geom. Appl., 34 (2014) , 139-165.  doi: 10.1016/j.difgeo.2014.04.008.
      M. Bauer , M. Bruveris  and  P. W. Michor , Overview of the geometries of shape spaces and diffeomorphism groups, Journal of Mathematical Imaging and Vision, 50 (2014) , 60-97.  doi: 10.1007/s10851-013-0490-z.
      M. F. Beg , M. I. Miller , A. Trouvé  and  L. Younes , Computing large deformation metric mappings via geodesic flows of diffeomorphisms, International Journal of Computer Vision, 61 (2005) , 139-157.  doi: 10.1023/B:VISI.0000043755.93987.aa.
      F. L. Bookstein , The study of shape transformation after d'Arcy Thompson, Mathematical Biosciences, 34 (1977) , 177-219.  doi: 10.1016/0025-5564(77)90101-8.
      R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, London, New York, 1982.
      N. Dunford and J. T. Schwartz, Linear Operators, Part 1, John Wiley & Sons, Inc., New York, 1988.
      D. G. Ebin  and  J. Marsden , Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2), 92 (1970) , 102-163.  doi: 10.2307/1970699.
      M. Eslitzbichler , Modelling character motions on infinite-dimensional manifolds, The Visual Computer, 31 (2015) , 1179-1190.  doi: 10.1007/s00371-014-1001-y.
      A. Frölicher and A. Kriegl, Linear Spaces and Differentiation Theory, John Wiley & Sons Ltd., 1988.
      S. C. Joshi  and  M. I. Miller , Landmark matching via large deformation diffeomorphisms, Image Processing, IEEE Transactions on, 9 (2000) , 1357-1370.  doi: 10.1109/83.855431.
      D. G. Kendall , Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16 (1984) , 81-121.  doi: 10.1112/blms/16.2.81.
      E. Klassen , A. Srivastava , M. Mio  and  S. Joshi , Analysis of planar shapes using geodesic paths on shape spaces, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26 (2004) , 372-383.  doi: 10.1109/TPAMI.2004.1262333.
      H. Laga , S. Kurtek , A. Srivastava  and  S. J. Miklavcic , Landmark-free statistical analysis of the shape of plant leaves, J. Theoret. Biol., 363 (2014) , 41-52.  doi: 10.1016/j.jtbi.2014.07.036.
      S. Lahiri , D. Robinson  and  E. Klassen , Precise matching of PL curves in $ \mathbb{R}^N $ in the square root velocity framework, Geom. Imaging Comput., 2 (2015) , 133-186.  doi: 10.4310/GIC.2015.v2.n3.a1.
      M. Micheli , P. W. Michor  and  D. Mumford , Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks, SIAM J. Imaging Sci., 5 (2012) , 394-433.  doi: 10.1137/10081678X.
      P. W. Michor  and  D. Mumford , Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006) , 1-48. 
      P. W. Michor  and  D. Mumford , An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007) , 74-113.  doi: 10.1016/j.acha.2006.07.004.
      P. W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the hamiltonian approach, in Phase space analysis of partial differential equations, Springer, 69 (2006), 133–215.
      D. Mumford  and  P. W. Michor , On Euler's equation and 'EPDiff', J. Geom. Mech., 5 (2013) , 319-344.  doi: 10.3934/jgm.2013.5.319.
      M. Salvai , Geodesic paths of circles in the plane, Rev. Mat. Complut., 24 (2011) , 211-218.  doi: 10.1007/s13163-010-0036-5.
      A. Srivastava , E. Klassen , S. H. Joshi  and  I. H. Jermyn , Shape analysis of elastic curves in Euclidean spaces, IEEE T. Pattern Anal., 33 (2011) , 1415-1428.  doi: 10.1109/TPAMI.2010.184.
      G. Sundaramoorthi , A. Mennucci , S. Soatto  and  A. Yezzi , A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci., 4 (2011) , 109-145.  doi: 10.1137/090781139.
      A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves, in Proceedings of the Tenth IEEE International Conference on Computer Vision, 1 (2005), 913–919. doi: 10.1109/ICCV.2005.60.
      L. Younes , P. W. Michor , J. Shah  and  D. Mumford , A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008) , 25-57. 
      L. Younes, Shapes and Diffeomorphisms, vol. 171 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 2010.
      N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Physical review letters, 15 (1965), p240. doi: 10.1103/PhysRevLett.15.240.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(2210) PDF downloads(185) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return