In this article we investigate a first order reparametrization-invariant Sobolev metric on the space of immersed curves. Motivated by applications in shape analysis where discretizations of this infinite-dimensional space are needed, we extend this metric to the space of Lipschitz curves, establish the wellposedness of the geodesic equation thereon, and show that the space of piecewise linear curves is a totally geodesic submanifold. Thus, piecewise linear curves are natural finite elements for the discretization of the geodesic equation. Interestingly, geodesics in this space can be seen as soliton solutions of the geodesic equation, which were not known to exist for reparametrization-invariant Sobolev metrics on spaces of curves.
Citation: |
M. Bauer
, P. Harms
and P. W. Michor
, Almost local metrics on shape space of hypersurfaces in $ n $-space, SIAM J. Imaging Sci., 5 (2012)
, 244-310.
doi: 10.1137/100807983.![]() ![]() ![]() |
|
M. Bauer
, M. Bruveris
, P. Harms
and J. Moller-Andersen
, A numerical framework for Sobolev metrics on the space of curves, SIAM J. Imaging Sci., 10 (2017)
, 47-73.
doi: 10.1137/16M1066282.![]() ![]() ![]() |
|
M. Bauer
, M. Bruveris
, S. Marsland
and P. W. Michor
, Constructing reparameterization invariant metrics on spaces of plane curves, Differential Geom. Appl., 34 (2014)
, 139-165.
doi: 10.1016/j.difgeo.2014.04.008.![]() ![]() ![]() |
|
M. Bauer
, M. Bruveris
and P. W. Michor
, Overview of the geometries of shape spaces and diffeomorphism groups, Journal of Mathematical Imaging and Vision, 50 (2014)
, 60-97.
doi: 10.1007/s10851-013-0490-z.![]() ![]() ![]() |
|
M. F. Beg
, M. I. Miller
, A. Trouvé
and L. Younes
, Computing large deformation metric mappings via geodesic flows of diffeomorphisms, International Journal of Computer Vision, 61 (2005)
, 139-157.
doi: 10.1023/B:VISI.0000043755.93987.aa.![]() ![]() |
|
F. L. Bookstein
, The study of shape transformation after d'Arcy Thompson, Mathematical Biosciences, 34 (1977)
, 177-219.
doi: 10.1016/0025-5564(77)90101-8.![]() ![]() ![]() |
|
R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris,
Solitons and Nonlinear Wave Equations, Academic Press, London, New York, 1982.
![]() ![]() |
|
N. Dunford and J. T. Schwartz,
Linear Operators, Part 1, John Wiley & Sons, Inc., New York, 1988.
![]() ![]() |
|
D. G. Ebin
and J. Marsden
, Groups of diffeomorphisms and the motion of an incompressible fluid., Ann. of Math. (2), 92 (1970)
, 102-163.
doi: 10.2307/1970699.![]() ![]() ![]() |
|
M. Eslitzbichler
, Modelling character motions on infinite-dimensional manifolds, The Visual Computer, 31 (2015)
, 1179-1190.
doi: 10.1007/s00371-014-1001-y.![]() ![]() |
|
A. Frölicher and A. Kriegl,
Linear Spaces and Differentiation Theory, John Wiley & Sons Ltd., 1988.
![]() ![]() |
|
S. C. Joshi
and M. I. Miller
, Landmark matching via large deformation diffeomorphisms, Image Processing, IEEE Transactions on, 9 (2000)
, 1357-1370.
doi: 10.1109/83.855431.![]() ![]() ![]() |
|
D. G. Kendall
, Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16 (1984)
, 81-121.
doi: 10.1112/blms/16.2.81.![]() ![]() ![]() |
|
E. Klassen
, A. Srivastava
, M. Mio
and S. Joshi
, Analysis of planar shapes using geodesic paths on shape spaces, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26 (2004)
, 372-383.
doi: 10.1109/TPAMI.2004.1262333.![]() ![]() |
|
H. Laga
, S. Kurtek
, A. Srivastava
and S. J. Miklavcic
, Landmark-free statistical analysis of the shape of plant leaves, J. Theoret. Biol., 363 (2014)
, 41-52.
doi: 10.1016/j.jtbi.2014.07.036.![]() ![]() ![]() |
|
S. Lahiri
, D. Robinson
and E. Klassen
, Precise matching of PL curves in $ \mathbb{R}^N $ in the square root velocity framework, Geom. Imaging Comput., 2 (2015)
, 133-186.
doi: 10.4310/GIC.2015.v2.n3.a1.![]() ![]() ![]() |
|
M. Micheli
, P. W. Michor
and D. Mumford
, Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks, SIAM J. Imaging Sci., 5 (2012)
, 394-433.
doi: 10.1137/10081678X.![]() ![]() ![]() |
|
P. W. Michor
and D. Mumford
, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006)
, 1-48.
![]() ![]() |
|
P. W. Michor
and D. Mumford
, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007)
, 74-113.
doi: 10.1016/j.acha.2006.07.004.![]() ![]() ![]() |
|
P. W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the hamiltonian approach, in Phase space analysis of partial differential equations, Springer, 69 (2006), 133–215.
![]() ![]() |
|
D. Mumford
and P. W. Michor
, On Euler's equation and 'EPDiff', J. Geom. Mech., 5 (2013)
, 319-344.
doi: 10.3934/jgm.2013.5.319.![]() ![]() ![]() |
|
M. Salvai
, Geodesic paths of circles in the plane, Rev. Mat. Complut., 24 (2011)
, 211-218.
doi: 10.1007/s13163-010-0036-5.![]() ![]() ![]() |
|
A. Srivastava
, E. Klassen
, S. H. Joshi
and I. H. Jermyn
, Shape analysis of elastic curves in Euclidean spaces, IEEE T. Pattern Anal., 33 (2011)
, 1415-1428.
doi: 10.1109/TPAMI.2010.184.![]() ![]() |
|
G. Sundaramoorthi
, A. Mennucci
, S. Soatto
and A. Yezzi
, A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci., 4 (2011)
, 109-145.
doi: 10.1137/090781139.![]() ![]() ![]() |
|
A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves, in Proceedings of the Tenth IEEE International Conference on Computer Vision, 1 (2005), 913–919.
doi: 10.1109/ICCV.2005.60.![]() ![]() |
|
L. Younes
, P. W. Michor
, J. Shah
and D. Mumford
, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008)
, 25-57.
![]() ![]() |
|
L. Younes,
Shapes and Diffeomorphisms, vol. 171 of Applied Mathematical Sciences, Springer-Verlag, Berlin, 2010.
![]() ![]() |
|
N. J. Zabusky and M. D. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Physical review letters, 15 (1965), p240.
doi: 10.1103/PhysRevLett.15.240.![]() ![]() |
The kernel of the