March  2018, 38(3): 1269-1291. doi: 10.3934/dcds.2018052

Weak regularization by stochastic drift : Result and counter example

Univ. Savoie Mont Blanc, CNRS, LAMA, F-73000 Chambéry, France

Received  March 2017 Revised  September 2017 Published  December 2017

In this paper, weak uniqueness of hypoelliptic stochastic differential equation with Hölder drift is proved when the Hölder exponent is strictly greater than 1/3. This result then "extends" to a weak framework the previous works [4,23,10], where strong uniqueness was proved when the regularity index of the drift is strictly greater than 2/3. Part of the result is also shown to be almost sharp thanks to a counter example when the Hölder exponent of the degenerate component is just below 1/3.

The approach is based on martingale problem formulation of Stroock and Varadhan and so on smoothing properties of the associated PDE which is, in the current setting, degenerate.

Citation: Paul-Eric Chaudru De Raynal. Weak regularization by stochastic drift : Result and counter example. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1269-1291. doi: 10.3934/dcds.2018052
References:
[1]

L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, arXiv:1401.1530 [math]Google Scholar

[2]

G. Cannizzaro and K. Chouk, Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential, To appear in Annals of Probability, arXiv:1501.04751 [math]Google Scholar

[3]

R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Processes and their Applications, 126 (2016), 2323-2366. doi: 10.1016/j.spa.2016.02.002. Google Scholar

[4]

P. E. Chaudru de Raynal, Strong existence and uniqueness for degenerate SDE with Hölder drift, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 53 (2017), 259-286. doi: 10.1214/15-AIHP716. Google Scholar

[5]

F. Delarue and R. Diel, Rough paths and 1d SDE with a time dependent distributional drift: Application to polymers, Probability Theory and Related Fields, 165 (2016), 1-63. doi: 10.1007/s00440-015-0626-8. Google Scholar

[6]

F. Delarue and F. Flandoli, The transition point in the zero noise limit for a 1d Peano example, Discrete and Continuous Dynamical Systems, 34 (2014), 4071-4083. doi: 10.3934/dcds.2014.34.4071. Google Scholar

[7]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, 259 (2010), 1577-1630. doi: 10.1016/j.jfa.2010.05.002. Google Scholar

[8]

M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Advances in Differential Equations, 11 (2006), 1261-1320. Google Scholar

[9]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98 (1989), 511-547. doi: 10.1007/BF01393835. Google Scholar

[10]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electronic Journal of Probability, 22 (2017), 42pp. Google Scholar

[11]

F. FlandoliE. Issoglio and F. Russo, Multidimensional stochastic differential equations with distributional drift, Transactions of the American Mathematical Society, 369 (2017), 1665-1688. Google Scholar

[12]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, vol. 2015 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011, Lectures from the 40th Probability Summer School held in Saint-Flour, 2010. Google Scholar

[13] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964. Google Scholar
[14]

M. Hairer, Introduction to regularity structures, Brazilian Journal of Probability and Statistics, 29 (2015), 175-210. doi: 10.1214/14-BJPS241. Google Scholar

[15]

L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967), 147-171. doi: 10.1007/BF02392081. Google Scholar

[16]

A. Kolmogorov, Zufällige Bewegungen. (Zur Theorie der Brownschen Bewegung.)., Ann. of Math., Ⅱ. Ser., 35 (1934), 116-117. doi: 10.2307/1968123. Google Scholar

[17]

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probability Theory and Related Fields, 131 (2005), 154-196. doi: 10.1007/s00440-004-0361-z. Google Scholar

[18]

H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, Journal of Differential Geometry, 1 (1967), 43-69. doi: 10.4310/jdg/1214427880. Google Scholar

[19]

S. Menozzi, Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electronic Communications in Probability, 16 (2011), 234-250. doi: 10.1214/ECP.v16-1619. Google Scholar

[20]

S. Menozzi, Martingale problems for some degenerate Kolmogorov equations, Stochastic Processes and their Applications, (2017). doi: 10.1016/j.spa.2017.06.001. Google Scholar

[21]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1979. Google Scholar

[22]

A. J. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Matematicheskiĭ Sbornik. Novaya Seriya, 111 (1980), 434-452,480. Google Scholar

[23]

F. Wang and X. Zhang, Degenerate SDE with Hölder-Dini Drift and Non-Lipschitz Noise Coefficient, SIAM Journal on Mathematical Analysis, 48 (2016), 2189-2226. doi: 10.1137/15M1023671. Google Scholar

[24]

X. Zhang, Strong solutions of SDES with singular drift and Sobolev diffusion coefficients, Stochastic Processes and their Applications, 115 (2005), 1805-1818. doi: 10.1016/j.spa.2005.06.003. Google Scholar

[25]

X. Zhang, Stochastic Hamiltonian flows with singular coefficients, arXiv:1606.04360 [math]Google Scholar

[26]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that will remove the drift, Mat. Sb. (N.S.), 93 (1974), 129-149,152. Google Scholar

show all references

References:
[1]

L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness, arXiv:1401.1530 [math]Google Scholar

[2]

G. Cannizzaro and K. Chouk, Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential, To appear in Annals of Probability, arXiv:1501.04751 [math]Google Scholar

[3]

R. Catellier and M. Gubinelli, Averaging along irregular curves and regularisation of ODEs, Stochastic Processes and their Applications, 126 (2016), 2323-2366. doi: 10.1016/j.spa.2016.02.002. Google Scholar

[4]

P. E. Chaudru de Raynal, Strong existence and uniqueness for degenerate SDE with Hölder drift, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 53 (2017), 259-286. doi: 10.1214/15-AIHP716. Google Scholar

[5]

F. Delarue and R. Diel, Rough paths and 1d SDE with a time dependent distributional drift: Application to polymers, Probability Theory and Related Fields, 165 (2016), 1-63. doi: 10.1007/s00440-015-0626-8. Google Scholar

[6]

F. Delarue and F. Flandoli, The transition point in the zero noise limit for a 1d Peano example, Discrete and Continuous Dynamical Systems, 34 (2014), 4071-4083. doi: 10.3934/dcds.2014.34.4071. Google Scholar

[7]

F. Delarue and S. Menozzi, Density estimates for a random noise propagating through a chain of differential equations, Journal of Functional Analysis, 259 (2010), 1577-1630. doi: 10.1016/j.jfa.2010.05.002. Google Scholar

[8]

M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form, Advances in Differential Equations, 11 (2006), 1261-1320. Google Scholar

[9]

R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inventiones Mathematicae, 98 (1989), 511-547. doi: 10.1007/BF01393835. Google Scholar

[10]

E. Fedrizzi, F. Flandoli, E. Priola and J. Vovelle, Regularity of stochastic kinetic equations, Electronic Journal of Probability, 22 (2017), 42pp. Google Scholar

[11]

F. FlandoliE. Issoglio and F. Russo, Multidimensional stochastic differential equations with distributional drift, Transactions of the American Mathematical Society, 369 (2017), 1665-1688. Google Scholar

[12]

F. Flandoli, Random Perturbation of PDEs and Fluid Dynamic Models, vol. 2015 of Lecture Notes in Mathematics, Springer, Heidelberg, 2011, Lectures from the 40th Probability Summer School held in Saint-Flour, 2010. Google Scholar

[13] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall Inc., Englewood Cliffs, N.J., 1964. Google Scholar
[14]

M. Hairer, Introduction to regularity structures, Brazilian Journal of Probability and Statistics, 29 (2015), 175-210. doi: 10.1214/14-BJPS241. Google Scholar

[15]

L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica, 119 (1967), 147-171. doi: 10.1007/BF02392081. Google Scholar

[16]

A. Kolmogorov, Zufällige Bewegungen. (Zur Theorie der Brownschen Bewegung.)., Ann. of Math., Ⅱ. Ser., 35 (1934), 116-117. doi: 10.2307/1968123. Google Scholar

[17]

N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probability Theory and Related Fields, 131 (2005), 154-196. doi: 10.1007/s00440-004-0361-z. Google Scholar

[18]

H. P. McKean Jr. and I. M. Singer, Curvature and the eigenvalues of the Laplacian, Journal of Differential Geometry, 1 (1967), 43-69. doi: 10.4310/jdg/1214427880. Google Scholar

[19]

S. Menozzi, Parametrix techniques and martingale problems for some degenerate Kolmogorov equations, Electronic Communications in Probability, 16 (2011), 234-250. doi: 10.1214/ECP.v16-1619. Google Scholar

[20]

S. Menozzi, Martingale problems for some degenerate Kolmogorov equations, Stochastic Processes and their Applications, (2017). doi: 10.1016/j.spa.2017.06.001. Google Scholar

[21]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1979. Google Scholar

[22]

A. J. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Matematicheskiĭ Sbornik. Novaya Seriya, 111 (1980), 434-452,480. Google Scholar

[23]

F. Wang and X. Zhang, Degenerate SDE with Hölder-Dini Drift and Non-Lipschitz Noise Coefficient, SIAM Journal on Mathematical Analysis, 48 (2016), 2189-2226. doi: 10.1137/15M1023671. Google Scholar

[24]

X. Zhang, Strong solutions of SDES with singular drift and Sobolev diffusion coefficients, Stochastic Processes and their Applications, 115 (2005), 1805-1818. doi: 10.1016/j.spa.2005.06.003. Google Scholar

[25]

X. Zhang, Stochastic Hamiltonian flows with singular coefficients, arXiv:1606.04360 [math]Google Scholar

[26]

A. K. Zvonkin, A transformation of the phase space of a diffusion process that will remove the drift, Mat. Sb. (N.S.), 93 (1974), 129-149,152. Google Scholar

[1]

Kazuaki Taira. The hypoelliptic Robin problem for quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-18. doi: 10.3934/dcdss.2020091

[2]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[3]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[4]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[5]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[6]

Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076

[7]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[8]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[9]

Hanwool Na, Myeongmin Kang, Miyoun Jung, Myungjoo Kang. Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters. Inverse Problems & Imaging, 2019, 13 (1) : 117-147. doi: 10.3934/ipi.2019007

[10]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[11]

Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014

[12]

Xiangtuan Xiong, Jinmei Li, Jin Wen. Some novel linear regularization methods for a deblurring problem. Inverse Problems & Imaging, 2017, 11 (2) : 403-426. doi: 10.3934/ipi.2017019

[13]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[14]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[15]

Mattia Turra. Existence and extinction in finite time for Stratonovich gradient noise porous media equations. Evolution Equations & Control Theory, 2019, 8 (4) : 867-882. doi: 10.3934/eect.2019042

[16]

Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537

[17]

Diego Castellaneta, Alberto Farina, Enrico Valdinoci. A pointwise gradient estimate for solutions of singular and degenerate pde's in possibly unbounded domains with nonnegative mean curvature. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1983-2003. doi: 10.3934/cpaa.2012.11.1983

[18]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[19]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[20]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (42)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]