An approach towards apriori interior $C^2$-estimates for the Monge-Ampère equation based on a mean-value inequality for nonnegative subsolutions to the linearized Monge-Ampère equation is implemented.
Citation: |
L. Caffarelli
and C. Gutiérrez
, Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math., 119 (1997)
, 423-465.
doi: 10.1353/ajm.1997.0010.![]() ![]() ![]() |
|
C. Chen
, F. Han
and Q. Ou
, The interior $C^2$ estimate for the Monge-Ampère equation in dimension $n=2$, Analysis PDE., 9 (2016)
, 1419-1432.
doi: 10.2140/apde.2016.9.1419.![]() ![]() ![]() |
|
G. De Philippis
and A. Figalli
, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc., 51 (2014)
, 527-580.
doi: 10.1090/S0273-0979-2014-01459-4.![]() ![]() ![]() |
|
A. Figalli,
The Monge-Ampère Equation and Its Applications Zurich Lectures in Advanced Mathematics. European Mathematical Society, 2017.
![]() ![]() |
|
L. Forzani
and D. Maldonado
, Properties of the solutions to the Monge-Ampère equation, Nonlinear Anal., 57 (2004)
, 815-829.
doi: 10.1016/j.na.2004.03.019.![]() ![]() ![]() |
|
D. Gilbarg and M. Trudinger,
Elliptic Partial Differential Equations of Second Order, Springer Verlag, 2001.
![]() ![]() |
|
D. Gilbarg and M. Trudinger,
Elliptic Partial Differential Equations of Second Order Springer Verlag, 2001.
![]() ![]() |
|
C. Gutiérrez,
The Monge-Ampère Equation Progress in Nonlinear Differential Equations and Their Applications, volume 44. Birkäuser, 2001.
![]() ![]() |
|
Q. Han and F. -H. Lin,
Elliptic Partial Differential Equations Courant Lecture Notes, vol. 1. American Mathematical Society, Providence, RI, 2011.
![]() ![]() |
|
F. Jiang
and N. Trudinger
, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci., 4 (2014)
, 407-431.
doi: 10.1007/s13373-014-0055-5.![]() ![]() ![]() |
|
D. Maldonado
, Harnack's inequality for solutions to the linearized Monge-Ampère operator with lower-order terms, J. Differential Equations, 256 (2014)
, 1987-2022.
doi: 10.1016/j.jde.2013.12.013.![]() ![]() ![]() |
|
A. V. Pogorelov
, The regularity of the generalized solutions of the equation $\det (\partial^2u/\partial x^i \partial x^j) = \varphi(x^1, x^2, ···, x^n) >0$ (Russian), Dokl. Akad. Nauk SSSR, 200 (1971)
, 534-537.
![]() ![]() |
|
N. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,
in Handbook of Geometric Analysis. No. 1 (eds. L. Ji, P. Li, R. Schoen and L. Simon), Adv.
Lect. Math. (ALM), International Press of Boston, 7 (2008), 467-524.
![]() ![]() |