March  2018, 38(3): 1553-1565. doi: 10.3934/dcds.2018064

On the universality of the incompressible Euler equation on compact manifolds

UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA

Received  July 2017 Published  December 2017

The incompressible Euler equations on a compact Riemannian manifold
$(M,g)$
take the form
$\partial_t u + \nabla_u u =- \mathrm{grad}_g p \\\mathrm{div}_g u =0.$
We show that any quadratic ODE
$\partial_t y =B(y,y)$
, where
$B \colon \mathbb{R}^n × \mathbb{R}^n \to \mathbb{R}^n$
is a symmetric bilinear map, can be linearly embedded into the incompressible Euler equations for some manifold
$M$
if and only if
$B$
obeys the cancellation condition
$\langle B(y,y), y \rangle =0$
for some positive definite inner product
$\langle,\rangle$
on
$\mathbb{R}^n$
. This allows one to construct explicit solutions to the Euler equations with various dynamical features, such as quasiperiodic solutions, or solutions that transition from one steady state to another, and provides evidence for the "Turing universality" of such Euler flows.
Citation: Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064
References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. S. AshbaughC. C. Chicone and R. H. Cushman, The twisting tennis racket, J. Dyn. Diff. Eq., 3 (1991), 67-85.  doi: 10.1007/BF01049489.  Google Scholar

[3]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.  Google Scholar

[4]

S. Bromberg and A. Medina, Completeness of homogeneous quadratic vector fields, Qual. Theory Dyn. Syst., 6 (2005), 181-185.  doi: 10.1007/BF02972671.  Google Scholar

[5]

R. J. Dickson and L. M. Perko, Bounded quadratic systems in the plane, J. of Diff. Equs., 7 (1990), 251-273.  doi: 10.1016/0022-0396(70)90110-5.  Google Scholar

[6]

E. I. Dinaburg and Ya. G. Sinai, A quasilinear approximation for the three-dimensional Navier-Stokes system, Moscow Math. J., 1 (2001), 381-388.   Google Scholar

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math.(2), 92 (1970), 102-163.  doi: 10.2307/1970699.  Google Scholar

[8]

S. Friedlander and N. Pavlovic, Blow-up in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 705-725.  doi: 10.1002/cpa.20017.  Google Scholar

[9]

U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.  Google Scholar

[10]

E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.   Google Scholar

[11]

J. L. Kaplan and J. A. Yorke, Non associative real algebras and quadratic differential equations, Nonlinear Analysis, 3 (1979), 49-51.  doi: 10.1016/0362-546X(79)90033-6.  Google Scholar

[12]

N. H. Katz and N. Pavlović, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005), 695-708.  doi: 10.1090/S0002-9947-04-03532-9.  Google Scholar

[13]

K. Okhitani and M. Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89 (1989), 329-341.  doi: 10.1143/PTP.81.329.  Google Scholar

[14]

T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.   Google Scholar

[15]

T. Tao, On the universality of potential well dynamics, Dynamics of Partial Differential Equations, 14 (2017), 219-238.  doi: 10.4310/DPDE.2017.v14.n3.a1.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 319-361.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. S. AshbaughC. C. Chicone and R. H. Cushman, The twisting tennis racket, J. Dyn. Diff. Eq., 3 (1991), 67-85.  doi: 10.1007/BF01049489.  Google Scholar

[3]

T. Bohr, M. H. Jensen, G. Paladin and A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, 1998.  Google Scholar

[4]

S. Bromberg and A. Medina, Completeness of homogeneous quadratic vector fields, Qual. Theory Dyn. Syst., 6 (2005), 181-185.  doi: 10.1007/BF02972671.  Google Scholar

[5]

R. J. Dickson and L. M. Perko, Bounded quadratic systems in the plane, J. of Diff. Equs., 7 (1990), 251-273.  doi: 10.1016/0022-0396(70)90110-5.  Google Scholar

[6]

E. I. Dinaburg and Ya. G. Sinai, A quasilinear approximation for the three-dimensional Navier-Stokes system, Moscow Math. J., 1 (2001), 381-388.   Google Scholar

[7]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math.(2), 92 (1970), 102-163.  doi: 10.2307/1970699.  Google Scholar

[8]

S. Friedlander and N. Pavlovic, Blow-up in a three-dimensional vector model for the Euler equations, Comm. Pure Appl. Math., 57 (2004), 705-725.  doi: 10.1002/cpa.20017.  Google Scholar

[9]

U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.  Google Scholar

[10]

E. B. Gledzer, System of hydrodynamic type admitting two quadratic integrals of motion, Sov. Phys. Dokl., 18 (1973), 216-217.   Google Scholar

[11]

J. L. Kaplan and J. A. Yorke, Non associative real algebras and quadratic differential equations, Nonlinear Analysis, 3 (1979), 49-51.  doi: 10.1016/0362-546X(79)90033-6.  Google Scholar

[12]

N. H. Katz and N. Pavlović, Finite time blow-up for a dyadic model of the Euler equations, Trans. Amer. Math. Soc., 357 (2005), 695-708.  doi: 10.1090/S0002-9947-04-03532-9.  Google Scholar

[13]

K. Okhitani and M. Yamada, Temporal intermittency in the energy cascade process and local Lyapunov analysis in fully developed model of turbulence, Prog. Theor. Phys., 89 (1989), 329-341.  doi: 10.1143/PTP.81.329.  Google Scholar

[14]

T. Tao, Finite time blowup for an averaged three-dimensional Navier-Stokes equation, J. Amer. Math. Soc., 29 (2016), 601-674.   Google Scholar

[15]

T. Tao, On the universality of potential well dynamics, Dynamics of Partial Differential Equations, 14 (2017), 219-238.  doi: 10.4310/DPDE.2017.v14.n3.a1.  Google Scholar

[1]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[2]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[3]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[5]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[8]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[11]

Alexandra Köthe, Anna Marciniak-Czochra, Izumi Takagi. Hysteresis-driven pattern formation in reaction-diffusion-ODE systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3595-3627. doi: 10.3934/dcds.2020170

[12]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[13]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[14]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[15]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[16]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[17]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[18]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[19]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[20]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (372)
  • HTML views (1082)
  • Cited by (1)

Other articles
by authors

[Back to Top]