March  2018, 38(3): 1605-1613. doi: 10.3934/dcds.2018066

Wave breaking of periodic solutions to the Fornberg-Whitham equation

Fakultät für Mathematik, Universität Wien, Austria

Received  September 2017 Revised  October 2017 Published  December 2017

Based on recent well-posedness results in Sobolev (or Besov spaces) for periodic solutions to the Fornberg-Whitham equations we investigate here the questions of wave breaking and blow-up for these solutions. We show first that finite maximal life time of a solution necessarily leads to wave breaking. Second, we prove that for a certain class of initial wave profiles the corresponding solutions do indeed blow-up in finite time.

Citation: Günther Hörmann. Wave breaking of periodic solutions to the Fornberg-Whitham equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1605-1613. doi: 10.3934/dcds.2018066
References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.  Google Scholar

[2]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.  Google Scholar

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[4]

A. Constantin, J. Escher, R. S. Johnson and G. Villari, Nonlinear Water Waves, Springer-Verlag, Florence, 2016.  Google Scholar

[5]

B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 373-404.  doi: 10.1098/rsta.1978.0064.  Google Scholar

[6]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004.  Google Scholar

[7]

J. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differential Equations, 260 (2016), 8530-8549.  doi: 10.1016/j.jde.2016.02.030.  Google Scholar

[8]

J. Holmes and R. C. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differential Equations, 263 (2017), 4355-4381.  doi: 10.1016/j.jde.2017.05.019.  Google Scholar

[9]

P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, American Mathematical Society, Providence, 1994.  Google Scholar

[10]

R. L. Seliger, A note on the breaking of waves, Proc. Roy. Soc. A, 303 (1968), 493-496.  doi: 10.1098/rspa.1968.0063.  Google Scholar

[11]

G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York-London-Sydney, 1974.  Google Scholar

show all references

References:
[1]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.  Google Scholar

[2]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011.  Google Scholar

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.  doi: 10.1007/BF02392586.  Google Scholar

[4]

A. Constantin, J. Escher, R. S. Johnson and G. Villari, Nonlinear Water Waves, Springer-Verlag, Florence, 2016.  Google Scholar

[5]

B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. Roy. Soc. London Ser. A, 289 (1978), 373-404.  doi: 10.1098/rsta.1978.0064.  Google Scholar

[6]

L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Upper Saddle River, 2004.  Google Scholar

[7]

J. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differential Equations, 260 (2016), 8530-8549.  doi: 10.1016/j.jde.2016.02.030.  Google Scholar

[8]

J. Holmes and R. C. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces, J. Differential Equations, 263 (2017), 4355-4381.  doi: 10.1016/j.jde.2017.05.019.  Google Scholar

[9]

P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, American Mathematical Society, Providence, 1994.  Google Scholar

[10]

R. L. Seliger, A note on the breaking of waves, Proc. Roy. Soc. A, 303 (1968), 493-496.  doi: 10.1098/rspa.1968.0063.  Google Scholar

[11]

G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York-London-Sydney, 1974.  Google Scholar

[1]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[2]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[6]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[9]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[10]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[14]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[15]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[16]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[17]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (171)
  • HTML views (195)
  • Cited by (4)

Other articles
by authors

[Back to Top]