April  2018, 38(4): 1615-1655. doi: 10.3934/dcds.2018067

Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior

1. 

University of Education Vorarlberg, Liechtensteinerstrasse 33 - 37, 6800 Feldkirch, Austria

2. 

University of Hamburg, Department of Mathematics, Bundesstrasse 55, 20146 Hamburg, Germany

Received  November 2015 Revised  October 2017 Published  January 2018

We show that on any smooth compact connected manifold of dimension $m≥2$ admitting a smooth non-trivial circle action $\mathcal{S} = \left\{S_t\right\}_{t ∈ \mathbb{R}}$, $S_{t+1}=S_t$, the set of weakly mixing $C^{∞}$-diffeomorphisms which preserve both a smooth volume $ν$ and a measurable Riemannian metric is dense in ${{\mathcal{A}}_{\alpha }}\left( M \right)={{\overline{\left\{ h\circ {{S}_{\alpha }}\circ {{h}^{-1}}:h\in \text{Dif}{{\text{f}}^{\infty }}\left( M,\nu \right) \right\}}}^{{{C}^{\infty }}}}$ for every Liouville number $α$. The proof is based on a quantitative version of the approximation by conjugation-method with explicitly constructed conjugation maps and partitions.

Citation: Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067
References:
[1]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36. Google Scholar

[2]

M. Benhenda, Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367. doi: 10.3934/jmd.2013.7.329. Google Scholar

[3]

R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998. Google Scholar

[4]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520. doi: 10.1090/S0002-9947-96-01501-2. Google Scholar

[5]

B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520. doi: 10.1017/S0143385703000798. Google Scholar

[6]

B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Scient. Ecole. Norm. Sup., 42 (2009), 193-219. doi: 10.24033/asens.2093. Google Scholar

[7]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364. doi: 10.1016/j.ansens.2005.03.004. Google Scholar

[8]

B. FayadM. Saprykina and A. Windsor, Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818. Google Scholar

[9]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88. Google Scholar

[10]

P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956. Google Scholar

[11]

P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. Google Scholar

[12]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge [u.a.], 1995. Google Scholar

[13]

B. Hasselblatt and A. Katok, Principal Structures In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002.Google Scholar

[14]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, American Math. Soc., Providence, 1997. Google Scholar

[15]

P. Kunde, Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569. doi: 10.1017/etds.2015.125. Google Scholar

[16]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294. doi: 10.1090/S0002-9947-1965-0182927-5. Google Scholar

[17]

H. Omori, Infinite Dimensional Lie Transformation Groups, Springer, Berlin [u.a.], 1974. Google Scholar

[18]

B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983. Google Scholar

[19]

M. D. Sklover, Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124. Google Scholar

show all references

References:
[1]

D. V. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trudy Moskov. Mat. Obsc., 23 (1970), 3-36. Google Scholar

[2]

M. Benhenda, Non-standard smooth realization of translations on the torus, J. Mod. Dyn., 7 (2013), 329-367. doi: 10.3934/jmd.2013.7.329. Google Scholar

[3]

R. Berndt, Einführung in Die Symplektische Geometrie, Vieweg, Braunschweig [u.a.], 1998. Google Scholar

[4]

G. M. Constantine and T. H. Savits, A multivariate Faa di Bruno formula with applications, Trans. Amer. Math. Soc., 348 (1996), 503-520. doi: 10.1090/S0002-9947-96-01501-2. Google Scholar

[5]

B. Fayad and A. Katok, Constructions in elliptic dynamics, Ergodic Theory Dynam. Systems, 24 (2004), 1477-1520. doi: 10.1017/S0143385703000798. Google Scholar

[6]

B. Fayad and R. Krikorian, Herman's last geometric theorem, Ann. Scient. Ecole. Norm. Sup., 42 (2009), 193-219. doi: 10.24033/asens.2093. Google Scholar

[7]

B. Fayad and M. Saprykina, Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary, Ann. Scient. Ecole. Norm. Sup.(4), 38 (2005), 339-364. doi: 10.1016/j.ansens.2005.03.004. Google Scholar

[8]

B. FayadM. Saprykina and A. Windsor, Nonstandard smooth realizations of Liouville rotations, Ergodic Theory Dynam. Systems, 27 (2007), 1803-1818. Google Scholar

[9]

R. Gunesch and A. Katok, Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure, Discrete Contin. Dynam. Systems, 6 (2000), 61-88. Google Scholar

[10]

P. R. Halmos, Lectures on Ergodic Theory, Japan Math Soc., Tokyo, 1956. Google Scholar

[11]

P. R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. Google Scholar

[12]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge [u.a.], 1995. Google Scholar

[13]

B. Hasselblatt and A. Katok, Principal Structures In: B. Hasselblatt und A. Katok (Editors) Handbook of Dynamical Systems, Band 1A. Elsevier, Amsterdam [u.a.], 2002.Google Scholar

[14]

A. Kriegl and P. Michor, The Convenient Setting of Global Analysis, American Math. Soc., Providence, 1997. Google Scholar

[15]

P. Kunde, Real-analytic weak mixing diffeomorphism preserving a measurable Riemannian metric, Ergodic Theory & Dynam. Systems 37, no. 37 (2017), 1547-1569. doi: 10.1017/etds.2015.125. Google Scholar

[16]

J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965), 286-294. doi: 10.1090/S0002-9947-1965-0182927-5. Google Scholar

[17]

H. Omori, Infinite Dimensional Lie Transformation Groups, Springer, Berlin [u.a.], 1974. Google Scholar

[18]

B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983. Google Scholar

[19]

M. D. Sklover, Classical dynamical systems on the torus with continuous spectrum, Izv. Vys. Ucebn. Zaved. Mat., 1967 (1967), 113-124. Google Scholar

Figure 1.  The action of the map $g_{\varepsilon}$.
Figure 2.  The action of the map $g_{a,b,\varepsilon}$.
Figure 3.  The map $\psi_\mu$ has the useful property of rotating several small cuboids individually while being the identity outside of a neighborhood of them.
Figure 4.  The map $\phi_n$ is constructed as concatenation of a stretch map $C_\lambda$, a rotation $\varphi$, the map $\psi_\mu$ mentioned before, and $C_\lambda^{-1}$ (the inverse of the stretch map). The map thus constructed has the very useful property of stretching a cuboid (illustrated here by the underlying grey rectangle) in one direction (similar to what a hyperbolic map would do), yet it is almost an isometry on all of the smaller cuboids (illustrated here by black squares with letters). In particular, a partition element $\hat{I} \in \eta_n$ (the leftmost grey rectangle) is mapped to a set that has size almost 1 in one of its coordinates.
[1]

Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61

[2]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[3]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[4]

Thierry de la Rue. An introduction to joinings in ergodic theory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 121-142. doi: 10.3934/dcds.2006.15.121

[5]

Hadda Hmili. Non topologically weakly mixing interval exchanges. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1079-1091. doi: 10.3934/dcds.2010.27.1079

[6]

François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete & Continuous Dynamical Systems - A, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275

[7]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[8]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[9]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

[10]

Eleonora Catsigeras, Heber Enrich. SRB measures of certain almost hyperbolic diffeomorphisms with a tangency. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 177-202. doi: 10.3934/dcds.2001.7.177

[11]

Philipp Kunde. Smooth diffeomorphisms with homogeneous spectrum and disjointness of convolutions. Journal of Modern Dynamics, 2016, 10: 439-481. doi: 10.3934/jmd.2016.10.439

[12]

Vladimir S. Matveev and Petar J. Topalov. Metric with ergodic geodesic flow is completely determined by unparameterized geodesics. Electronic Research Announcements, 2000, 6: 98-104.

[13]

A. M. Micheletti, Angela Pistoia. Multiple eigenvalues of the Laplace-Beltrami operator and deformation of the Riemannian metric. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 709-720. doi: 10.3934/dcds.1998.4.709

[14]

Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22

[15]

Cristina Lizana, Vilton Pinheiro, Paulo Varandas. Contribution to the ergodic theory of robustly transitive maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 353-365. doi: 10.3934/dcds.2015.35.353

[16]

Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437

[17]

Ugo Boscain, Gregoire Charlot, Moussa Gaye, Paolo Mason. Local properties of almost-Riemannian structures in dimension 3. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4115-4147. doi: 10.3934/dcds.2015.35.4115

[18]

Sylvain Ervedoza, Enrique Zuazua. A systematic method for building smooth controls for smooth data. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1375-1401. doi: 10.3934/dcdsb.2010.14.1375

[19]

Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645

[20]

Snir Ben Ovadia. Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds. Journal of Modern Dynamics, 2018, 13: 43-113. doi: 10.3934/jmd.2018013

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (200)
  • HTML views (451)
  • Cited by (2)

Other articles
by authors

[Back to Top]