April  2018, 38(4): 1833-1848. doi: 10.3934/dcds.2018075

Reflected backward stochastic differential equations with perturbations

Faculty of Science and Mathematics, University of Niš, Višegradska 33,18000 Niš, Serbia

* Corresponding author

Received  October 2016 Revised  October 2017 Published  January 2018

Fund Project: Supported by Grant No 174007 of MNTRS.

This paper deals with a large class of reflected backward stochastic differential equations whose generators arbitrarily depend on a small parameter. The solutions of these equations, named the perturbed equations, are compared in the $L^p$-sense, $p∈ ]1,2[$, with the solutions of the appropriate equations of the equal type, independent of a small parameter and named the unperturbed equations. Conditions under which the solution of the unperturbed equation is $L^p$-stable are given. It is shown that for an arbitrary $η>0$ there exists an interval $[t(η), T]\subset [0,T]$ on which the $L^p$-difference between the solutions of both the perturbed and unperturbed equations is less than $η$.

Citation: Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075
References:
[1]

A. Aman, $ L_p$-solutions of reflected generalized backward stochastic differential equations with non-Lipschitz coefficients, Random Operators/Stochastic. Eqs., 17 (2009), 201-219.   Google Scholar

[2]

A. Aman, $L_p$-solutions of generalized backward stochastic differential equations with barrier, Afr. Diaspora J. Math, 8 (2009), 68-80.   Google Scholar

[3]

K. BahlaliEl. Essaky and Y. Ouknine, Reflected backward stochastic differential equations with jumps and locally Lipschitz coefficient, Random Oper. Stochastic Equations, 10 (2002), 335-350.   Google Scholar

[4]

K. BahlaliEl. Essaky and Y. Ouknine, Reflected backward stochastic differential equations with jumps and locally monotone coefficient, Stoch. Anal. Appl., 22 (2004), 939-970.   Google Scholar

[5]

D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.  Google Scholar

[6]

B. El-Asri and S. Hamadène, The finite horizon optimal multi-modes switching problem: The viscosity solution approach, Appl. Math. Optim., 60 (2009), 213-235.   Google Scholar

[7]

N. El-KarouiC. KapoudjianE. PardouxS. Peng and M.-C. Quenez, Reflected solutions of backward SDE s, and related obstacle problems for PDE s, Ann. Probab., 25 (1997), 702-737.   Google Scholar

[8]

N. El-KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.   Google Scholar

[9]

M. I. Friedlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, Berlin, 1984.  Google Scholar

[10]

A. Gégout-Petit, A Filtrage d'un processus partiellement observé et équations differentielles stochastiques rétrogrades réfléchies, Thése de doctorat l'Université de Provence-Aix-Marseille, 1995. Google Scholar

[11]

S. Hamadène, BSDEs and risk sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., 107 (2003), 145-169.   Google Scholar

[12]

S. Hamadène and J. P. Lepeltier, Backward equations, stochastic control and zero-sum stochastic differential games, Stoch. Stoch. Rep., 54 (1995), 221-231.   Google Scholar

[13]

S. Hamadène, Reflected BSDEs with discontinuous barrier and applications, Stoch. Stoch. Rep., 74 (2002), 571-596.   Google Scholar

[14]

S. Hamadène and Y. Ouknine, Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. of Probab., 8 (2003), 1-20.   Google Scholar

[15]

S. Hamadène and A. Popier, Lp-solutions for Reflected Backward Stochastic Differential Equations, Stochastics and Dynamics, 12 (2012), 1150016, 35 pp.  Google Scholar

[16]

S. Hamadène and M. Jeanblanc, On the stopping and starting problem: Application to reversible investment, Math. Oper. Res., 32 (2007), 182-192.   Google Scholar

[17]

S. JankovicM. Jovanovic and J. Djordjevic, Perturbed backward stochastic differential equations, Math. Comput. Modelling, 55 (2012), 1734-1745.   Google Scholar

[18]

R. Khasminskii, On stochastic processes deffined by differential equations with a small parameter, Theory Probab. Appl., 11 (1966), 240-259.   Google Scholar

[19]

J. P. LepeltierA. Matoussi and M. Xu, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions, Adv. Appl. Probab., 37 (2005), 134-159.   Google Scholar

[20]

J. P. Lepeltier and M. Xu, Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., 75 (2005), 58-66.   Google Scholar

[21]

X. Mao, Stochastic Differential Equations and Applications, second edition, Horvood, Chichester, UK, 2008.  Google Scholar

[22]

A. Matoussi, Reflected solutions of backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., 34 (1997), 347-354.   Google Scholar

[23]

Y. Ouknine, Reflected BSDE with jumps, Stoch. Stoch. Rep., 65 (1998), 111-125.   Google Scholar

[24]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14 (1990), 55-61.   Google Scholar

[25]

E. Pardoux and S. G. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic Partial Differential Equations and Their Applications, (Charlotte, NC, 1991) (B. Rozowskii and R. Sowers, eds. ), Lecture Notes in Control and Information Sci., Springer, Berlin, 176 (1992), 200-217.  Google Scholar

[26]

É Pardoux and A. Rascanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., 76 (1998), 191-215.   Google Scholar

[27]

É Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in: Nonlinear analysis, differential equations and control (Montreal, QC, 1998), Volume 528 of NATO Sci. Ser. C Math. Phys. Sci. (Kluwer Academic Publishers, Dordrecht, (1999), 503-549.  Google Scholar

[28]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Rep., 37 (1991), 61-74.   Google Scholar

[29]

Y. Ren and N. Xia, Generalized reflected BSDEs and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stoch. Anal. Appl., 24 (2006), 1013-1033.   Google Scholar

[30]

Y. Ren and L. Hu, Reflected backward stochastic differential equations driven by Lévy processes, Statist. Probab. Lett., 77 (2007), 1559-1566.   Google Scholar

[31]

A. Roskosz and L. Slominski, Lp solutions of reflected BSDEs under monotonicity condition, Stochastic Process. Appl., 122 (2012), 3875-3900, arXiv: 1205.6737. doi: 10.1016/j.spa.2012.07.006.  Google Scholar

[32]

J. Stoyanov, Regularly perturbed stochastic differential systems with an internal random noise, in: Proc. 2ndWorld Congress Nonlin. Anal., Nonlinear Anal., 30 (1997), 4105-4111. doi: d10.1016/S0362-546X(97)00158-2oi.  Google Scholar

[33]

J. Stoyanov and D. Botev, Quantitative results for perturbed stochastic differential equations, J. Appl. Math. Stoch. Anal., 9 (1996), 255-261.  doi: 10.1155/S104895339600024X.  Google Scholar

show all references

References:
[1]

A. Aman, $ L_p$-solutions of reflected generalized backward stochastic differential equations with non-Lipschitz coefficients, Random Operators/Stochastic. Eqs., 17 (2009), 201-219.   Google Scholar

[2]

A. Aman, $L_p$-solutions of generalized backward stochastic differential equations with barrier, Afr. Diaspora J. Math, 8 (2009), 68-80.   Google Scholar

[3]

K. BahlaliEl. Essaky and Y. Ouknine, Reflected backward stochastic differential equations with jumps and locally Lipschitz coefficient, Random Oper. Stochastic Equations, 10 (2002), 335-350.   Google Scholar

[4]

K. BahlaliEl. Essaky and Y. Ouknine, Reflected backward stochastic differential equations with jumps and locally monotone coefficient, Stoch. Anal. Appl., 22 (2004), 939-970.   Google Scholar

[5]

D. Bainov and P. Simeonov, Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.  Google Scholar

[6]

B. El-Asri and S. Hamadène, The finite horizon optimal multi-modes switching problem: The viscosity solution approach, Appl. Math. Optim., 60 (2009), 213-235.   Google Scholar

[7]

N. El-KarouiC. KapoudjianE. PardouxS. Peng and M.-C. Quenez, Reflected solutions of backward SDE s, and related obstacle problems for PDE s, Ann. Probab., 25 (1997), 702-737.   Google Scholar

[8]

N. El-KarouiS. Peng and M. C. Quenez, Backward stochastic differential equations in finance, Math. Finance, 7 (1997), 1-71.   Google Scholar

[9]

M. I. Friedlin, A. D. Wentzell, Random Perturbations of Dynamical Systems, Springer, Berlin, 1984.  Google Scholar

[10]

A. Gégout-Petit, A Filtrage d'un processus partiellement observé et équations differentielles stochastiques rétrogrades réfléchies, Thése de doctorat l'Université de Provence-Aix-Marseille, 1995. Google Scholar

[11]

S. Hamadène, BSDEs and risk sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., 107 (2003), 145-169.   Google Scholar

[12]

S. Hamadène and J. P. Lepeltier, Backward equations, stochastic control and zero-sum stochastic differential games, Stoch. Stoch. Rep., 54 (1995), 221-231.   Google Scholar

[13]

S. Hamadène, Reflected BSDEs with discontinuous barrier and applications, Stoch. Stoch. Rep., 74 (2002), 571-596.   Google Scholar

[14]

S. Hamadène and Y. Ouknine, Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. of Probab., 8 (2003), 1-20.   Google Scholar

[15]

S. Hamadène and A. Popier, Lp-solutions for Reflected Backward Stochastic Differential Equations, Stochastics and Dynamics, 12 (2012), 1150016, 35 pp.  Google Scholar

[16]

S. Hamadène and M. Jeanblanc, On the stopping and starting problem: Application to reversible investment, Math. Oper. Res., 32 (2007), 182-192.   Google Scholar

[17]

S. JankovicM. Jovanovic and J. Djordjevic, Perturbed backward stochastic differential equations, Math. Comput. Modelling, 55 (2012), 1734-1745.   Google Scholar

[18]

R. Khasminskii, On stochastic processes deffined by differential equations with a small parameter, Theory Probab. Appl., 11 (1966), 240-259.   Google Scholar

[19]

J. P. LepeltierA. Matoussi and M. Xu, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions, Adv. Appl. Probab., 37 (2005), 134-159.   Google Scholar

[20]

J. P. Lepeltier and M. Xu, Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., 75 (2005), 58-66.   Google Scholar

[21]

X. Mao, Stochastic Differential Equations and Applications, second edition, Horvood, Chichester, UK, 2008.  Google Scholar

[22]

A. Matoussi, Reflected solutions of backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., 34 (1997), 347-354.   Google Scholar

[23]

Y. Ouknine, Reflected BSDE with jumps, Stoch. Stoch. Rep., 65 (1998), 111-125.   Google Scholar

[24]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14 (1990), 55-61.   Google Scholar

[25]

E. Pardoux and S. G. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic Partial Differential Equations and Their Applications, (Charlotte, NC, 1991) (B. Rozowskii and R. Sowers, eds. ), Lecture Notes in Control and Information Sci., Springer, Berlin, 176 (1992), 200-217.  Google Scholar

[26]

É Pardoux and A. Rascanu, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., 76 (1998), 191-215.   Google Scholar

[27]

É Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in: Nonlinear analysis, differential equations and control (Montreal, QC, 1998), Volume 528 of NATO Sci. Ser. C Math. Phys. Sci. (Kluwer Academic Publishers, Dordrecht, (1999), 503-549.  Google Scholar

[28]

S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Rep., 37 (1991), 61-74.   Google Scholar

[29]

Y. Ren and N. Xia, Generalized reflected BSDEs and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stoch. Anal. Appl., 24 (2006), 1013-1033.   Google Scholar

[30]

Y. Ren and L. Hu, Reflected backward stochastic differential equations driven by Lévy processes, Statist. Probab. Lett., 77 (2007), 1559-1566.   Google Scholar

[31]

A. Roskosz and L. Slominski, Lp solutions of reflected BSDEs under monotonicity condition, Stochastic Process. Appl., 122 (2012), 3875-3900, arXiv: 1205.6737. doi: 10.1016/j.spa.2012.07.006.  Google Scholar

[32]

J. Stoyanov, Regularly perturbed stochastic differential systems with an internal random noise, in: Proc. 2ndWorld Congress Nonlin. Anal., Nonlinear Anal., 30 (1997), 4105-4111. doi: d10.1016/S0362-546X(97)00158-2oi.  Google Scholar

[33]

J. Stoyanov and D. Botev, Quantitative results for perturbed stochastic differential equations, J. Appl. Math. Stoch. Anal., 9 (1996), 255-261.  doi: 10.1155/S104895339600024X.  Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[3]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (206)
  • HTML views (307)
  • Cited by (1)

Other articles
by authors

[Back to Top]