This paper deals with a large class of reflected backward stochastic differential equations whose generators arbitrarily depend on a small parameter. The solutions of these equations, named the perturbed equations, are compared in the $L^p$-sense, $p∈ ]1,2[$, with the solutions of the appropriate equations of the equal type, independent of a small parameter and named the unperturbed equations. Conditions under which the solution of the unperturbed equation is $L^p$-stable are given. It is shown that for an arbitrary $η>0$ there exists an interval $[t(η), T]\subset [0,T]$ on which the $L^p$-difference between the solutions of both the perturbed and unperturbed equations is less than $η$.
Citation: |
A. Aman
, $ L_p$-solutions of reflected generalized backward stochastic differential equations with non-Lipschitz coefficients, Random Operators/Stochastic. Eqs., 17 (2009)
, 201-219.
![]() ![]() |
|
A. Aman
, $L_p$-solutions of generalized backward stochastic differential equations with barrier, Afr. Diaspora J. Math, 8 (2009)
, 68-80.
![]() ![]() |
|
K. Bahlali
, El. Essaky
and Y. Ouknine
, Reflected backward stochastic differential equations with jumps and locally Lipschitz coefficient, Random Oper. Stochastic Equations, 10 (2002)
, 335-350.
![]() ![]() |
|
K. Bahlali
, El. Essaky
and Y. Ouknine
, Reflected backward stochastic differential equations with jumps and locally monotone coefficient, Stoch. Anal. Appl., 22 (2004)
, 939-970.
![]() ![]() |
|
D. Bainov and P. Simeonov,
Integral Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Netherlands, 1992.
![]() ![]() |
|
B. El-Asri
and S. Hamadène
, The finite horizon optimal multi-modes switching problem: The viscosity solution approach, Appl. Math. Optim., 60 (2009)
, 213-235.
![]() ![]() |
|
N. El-Karoui
, C. Kapoudjian
, E. Pardoux
, S. Peng
and M.-C. Quenez
, Reflected solutions of backward SDE s, and related obstacle problems for PDE s, Ann. Probab., 25 (1997)
, 702-737.
![]() ![]() |
|
N. El-Karoui
, S. Peng
and M. C. Quenez
, Backward stochastic differential equations in finance, Math. Finance, 7 (1997)
, 1-71.
![]() ![]() |
|
M. I. Friedlin, A. D. Wentzell,
Random Perturbations of Dynamical Systems, Springer, Berlin, 1984.
![]() ![]() |
|
A. Gégout-Petit, A Filtrage d'un processus partiellement observé et équations differentielles stochastiques rétrogrades réfléchies, Thése de doctorat l'Université de Provence-Aix-Marseille, 1995.
![]() |
|
S. Hamadène
, BSDEs and risk sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., 107 (2003)
, 145-169.
![]() ![]() |
|
S. Hamadène
and J. P. Lepeltier
, Backward equations, stochastic control and zero-sum stochastic differential games, Stoch. Stoch. Rep., 54 (1995)
, 221-231.
![]() ![]() |
|
S. Hamadène
, Reflected BSDEs with discontinuous barrier and applications, Stoch. Stoch. Rep., 74 (2002)
, 571-596.
![]() ![]() |
|
S. Hamadène
and Y. Ouknine
, Reflected backward stochastic differential equations with jumps and random obstacle, Electron. J. of Probab., 8 (2003)
, 1-20.
![]() ![]() |
|
S. Hamadène and A. Popier, Lp-solutions for Reflected Backward Stochastic Differential Equations,
Stochastics and Dynamics, 12 (2012), 1150016, 35 pp.
![]() ![]() |
|
S. Hamadène
and M. Jeanblanc
, On the stopping and starting problem: Application to reversible investment, Math. Oper. Res., 32 (2007)
, 182-192.
![]() ![]() |
|
S. Jankovic
, M. Jovanovic
and J. Djordjevic
, Perturbed backward stochastic differential equations, Math. Comput. Modelling, 55 (2012)
, 1734-1745.
![]() ![]() |
|
R. Khasminskii
, On stochastic processes deffined by differential equations with a small parameter, Theory Probab. Appl., 11 (1966)
, 240-259.
![]() ![]() |
|
J. P. Lepeltier
, A. Matoussi
and M. Xu
, Reflected backward stochastic differential equations under monotonicity and general increasing growth conditions, Adv. Appl. Probab., 37 (2005)
, 134-159.
![]() ![]() |
|
J. P. Lepeltier
and M. Xu
, Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier, Statist. Probab. Lett., 75 (2005)
, 58-66.
![]() ![]() |
|
X. Mao,
Stochastic Differential Equations and Applications, second edition, Horvood, Chichester, UK, 2008.
![]() ![]() |
|
A. Matoussi
, Reflected solutions of backward stochastic differential equations with continuous coefficients, Statist. Probab. Lett., 34 (1997)
, 347-354.
![]() ![]() |
|
Y. Ouknine
, Reflected BSDE with jumps, Stoch. Stoch. Rep., 65 (1998)
, 111-125.
![]() ![]() |
|
E. Pardoux
and S. G. Peng
, Adapted solution of a backward stochastic differential equation, Systems Control Letters, 14 (1990)
, 55-61.
![]() ![]() |
|
E. Pardoux and S. G. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in: Stochastic Partial Differential Equations and Their Applications, (Charlotte, NC, 1991) (B. Rozowskii and R. Sowers, eds. ), Lecture Notes in Control and Information Sci., Springer, Berlin, 176 (1992), 200-217.
![]() ![]() |
|
É Pardoux
and A. Rascanu
, Backward stochastic differential equations with subdifferential operator and related variational inequalities, Stochastic Process. Appl., 76 (1998)
, 191-215.
![]() ![]() |
|
É Pardoux, BSDEs, weak convergence and homogenization of semilinear PDEs, in: Nonlinear analysis, differential equations and control (Montreal, QC, 1998), Volume 528 of NATO Sci. Ser. C Math. Phys. Sci. (Kluwer Academic Publishers, Dordrecht, (1999), 503-549.
![]() ![]() |
|
S. Peng
, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations, Stoch. Stoch. Rep., 37 (1991)
, 61-74.
![]() ![]() |
|
Y. Ren
and N. Xia
, Generalized reflected BSDEs and an obstacle problem for PDEs with a nonlinear Neumann boundary condition, Stoch. Anal. Appl., 24 (2006)
, 1013-1033.
![]() ![]() |
|
Y. Ren
and L. Hu
, Reflected backward stochastic differential equations driven by Lévy processes, Statist. Probab. Lett., 77 (2007)
, 1559-1566.
![]() ![]() |
|
A. Roskosz and L. Slominski, Lp solutions of reflected BSDEs under monotonicity condition, Stochastic Process. Appl., 122 (2012), 3875-3900, arXiv: 1205.6737.
doi: 10.1016/j.spa.2012.07.006.![]() ![]() ![]() |
|
J. Stoyanov, Regularly perturbed stochastic differential systems with an internal random noise, in: Proc. 2ndWorld Congress Nonlin. Anal., Nonlinear Anal., 30 (1997), 4105-4111.
doi: d10.1016/S0362-546X(97)00158-2oi.![]() ![]() ![]() |
|
J. Stoyanov
and D. Botev
, Quantitative results for perturbed stochastic differential equations, J. Appl. Math. Stoch. Anal., 9 (1996)
, 255-261.
doi: 10.1155/S104895339600024X.![]() ![]() ![]() |