• Previous Article
    Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity
  • DCDS Home
  • This Issue
  • Next Article
    Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities
April  2018, 38(4): 1889-1933. doi: 10.3934/dcds.2018077

Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$

1. 

School of Mathematics and Statistics, Shandong University of Technology Zibo 255049, China

2. 

School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

3. 

Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan

4. 

School of Mathematical and Statistical Sciences, University of Texas-Rio Grande Valley, Edinburg, Texas 78539, USA

* Corresponding author

Received  November 2016 Revised  October 2017 Published  January 2018

We study the existence of positive solutions for the non-autonomous Schrödinger-Poisson system:
$\left\{ {\begin{array}{*{20}{l}} { - \Delta u + u + \lambda K\left( x \right)\phi u = a\left( x \right){{\left| u \right|}^{p - 2}}u}&{{\text{in }}{\mathbb{R}^3},} \\ { - \Delta \phi = K\left( x \right){u^2}}&{{\text{in }}{\mathbb{R}^3},} \end{array}} \right.$
where
$\lambda >0$
,
$2 < p \le 4$
and both
$K\left( x\right) $
and
$a\left( x\right) $
are nonnegative functions in
$\mathbb{R}^{3}$
, which satisfy the given conditions, but not require any symmetry property. Assuming that
$% \lim_{\left\vert x\right\vert \rightarrow \infty }K\left( x\right) = K_{\infty }\geq 0$
and
$\lim_{\left\vert x\right\vert \rightarrow \infty }a\left( x\right) = a_{\infty }>0$
, we explore the existence of positive solutions, depending on the parameters
$\lambda$
and
$p$
. More importantly, we establish the existence of ground state solutions in the case of
$3.18 \approx \frac{{1 + \sqrt {73} }}{3} < P \le 4$
.
Citation: Juntao Sun, Tsung-Fang Wu, Zhaosheng Feng. Non-autonomous Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1889-1933. doi: 10.3934/dcds.2018077
References:
[1]

A. Ambrosetti, On the Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.  doi: 10.1007/s00032-008-0094-z.  Google Scholar

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 39-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[5]

P. A. BindingP. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 5 (1997), 1-11.   Google Scholar

[6]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490.   Google Scholar

[7]

K. J. Brown and T. F. Wu, A fibrering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations, 69 (2007), 1-9.   Google Scholar

[8]

K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differential Integral Equations, 22 (2009), 1097-1114.   Google Scholar

[9]

K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[10]

G. Cerami and G. Vaira, Positive solutions for some non autonomous Schrödinger-Poisson Systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[11]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.  Google Scholar

[12]

G. M. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94 (2004), 1-31.   Google Scholar

[13]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.   Google Scholar

[14]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$ -Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[16]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.   Google Scholar

[17]

I. Ianni and G. Vaira, Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit, Nonlinear Differ. Equ. Appl., 22 (2015), 741-776.  doi: 10.1007/s00030-014-0303-0.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.   Google Scholar

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅰ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[20]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅱ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[21]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Applied Mathematics Letters, 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[22]

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.1090/S0002-9947-1960-0111898-8.  Google Scholar

[23]

W. M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[24]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[25]

D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar

[26]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

[27]

J. SunH. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), 3365-3380.  doi: 10.1016/j.jde.2011.12.007.  Google Scholar

[28]

J. Sun and T. F. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649-1669.  doi: 10.1007/s00033-015-0494-1.  Google Scholar

[29]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.  Google Scholar

[30]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.  Google Scholar

[31]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297.  doi: 10.1007/s11587-011-0109-x.  Google Scholar

[32]

Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816.  doi: 10.3934/dcds.2007.18.809.  Google Scholar

[33]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23.  doi: 10.1016/j.jde.2013.03.005.  Google Scholar

[34]

L. Zhao and F. Zhao, On the existence of solutions for the Schr ödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

References:
[1]

A. Ambrosetti, On the Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.  doi: 10.1007/s00032-008-0094-z.  Google Scholar

[2]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 39-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[5]

P. A. BindingP. Drábek and Y. X. Huang, On Neumann boundary value problems for some quasilinear elliptic equations, Electron. J. Differential Equations, 5 (1997), 1-11.   Google Scholar

[6]

H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer Math. Soc., 88 (1983), 486-490.   Google Scholar

[7]

K. J. Brown and T. F. Wu, A fibrering map approach to a semilinear elliptic boundary value problem, Electron. J. Differential Equations, 69 (2007), 1-9.   Google Scholar

[8]

K. J. Brown and T. F. Wu, A fibering map approach to a potential operator equation and its applications, Differential Integral Equations, 22 (2009), 1097-1114.   Google Scholar

[9]

K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193 (2003), 481-499.  doi: 10.1016/S0022-0396(03)00121-9.  Google Scholar

[10]

G. Cerami and G. Vaira, Positive solutions for some non autonomous Schrödinger-Poisson Systems, J. Differential Equations, 248 (2010), 521-543.  doi: 10.1016/j.jde.2009.06.017.  Google Scholar

[11]

C. Y. ChenY. C. Kuo and T. F. Wu, Existence and multiplicity of positive solutions for the nonlinear Schrödinger-Poisson equations, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 745-764.  doi: 10.1017/S0308210511000692.  Google Scholar

[12]

G. M. Coclite and V. Georgiev, Solitary waves for Maxwell-Schrödinger equations, Electron. J. Differential Equations, 94 (2004), 1-31.   Google Scholar

[13]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.   Google Scholar

[14]

P. Drábek and S. I. Pohozaev, Positive solutions for the $p$ -Laplacian: Application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 703-726.  doi: 10.1017/S0308210500023787.  Google Scholar

[15]

I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[16]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.   Google Scholar

[17]

I. Ianni and G. Vaira, Non-radial sign-changing solutions for the Schrödinger-Poisson problem in the semiclassical limit, Nonlinear Differ. Equ. Appl., 22 (2015), 741-776.  doi: 10.1007/s00030-014-0303-0.  Google Scholar

[18]

M. K. Kwong, Uniqueness of positive solution of $Δ u-u+u^{p}=0$ in $\mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 105 (1989), 243-266.   Google Scholar

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅰ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 109-145.  doi: 10.1016/S0294-1449(16)30428-0.  Google Scholar

[20]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case Ⅱ, Ann. Inst. H. Poincar é Anal. Non Linéaire, 1 (1984), 223-283.  doi: 10.1016/S0294-1449(16)30422-X.  Google Scholar

[21]

A. MaoL. YangA. Qian and S. Luan, Existence and concentration of solutions of Schrödinger-Poisson system, Applied Mathematics Letters, 68 (2017), 8-12.  doi: 10.1016/j.aml.2016.12.014.  Google Scholar

[22]

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95 (1960), 101-123.  doi: 10.1090/S0002-9947-1960-0111898-8.  Google Scholar

[23]

W. M. Ni and I. Takagi, On the shape of least energy solution to a Neumann problem, Comm. Pure Appl. Math., 44 (1991), 819-851.  doi: 10.1002/cpa.3160440705.  Google Scholar

[24]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[25]

D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar

[26]

O. Sánchez and J. Soler, Long-time dynamics of the Schrödinger-Poisson-Slater system, J. Statist. Phys., 114 (2004), 179-204.  doi: 10.1023/B:JOSS.0000003109.97208.53.  Google Scholar

[27]

J. SunH. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, J. Differential Equations, 252 (2012), 3365-3380.  doi: 10.1016/j.jde.2011.12.007.  Google Scholar

[28]

J. Sun and T. F. Wu, On the nonlinear Schrödinger-Poisson systems with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649-1669.  doi: 10.1007/s00033-015-0494-1.  Google Scholar

[29]

J. SunT. F. Wu and Z. Feng, Multiplicity of positive solutions for a nonlinear Schrödinger-Poisson system, J. Differential Equations, 260 (2016), 586-627.  doi: 10.1016/j.jde.2015.09.002.  Google Scholar

[30]

G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281-304.  doi: 10.1016/S0294-1449(16)30238-4.  Google Scholar

[31]

G. Vaira, Ground states for Schrödinger-Poisson type systems, Ric. Mat., 60 (2011), 263-297.  doi: 10.1007/s11587-011-0109-x.  Google Scholar

[32]

Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $\mathbb{R}^{3}$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816.  doi: 10.3934/dcds.2007.18.809.  Google Scholar

[33]

L. ZhaoH. Liu and F. Zhao, Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential, J. Differential Equations, 255 (2013), 1-23.  doi: 10.1016/j.jde.2013.03.005.  Google Scholar

[34]

L. Zhao and F. Zhao, On the existence of solutions for the Schr ödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[2]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[3]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[9]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[14]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[15]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[16]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[17]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[18]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[19]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[20]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (276)
  • HTML views (499)
  • Cited by (12)

Other articles
by authors

[Back to Top]