For a heat equation with memory driven by a Lévy-type noise we establish the existence of a unique solution. The main part of the article focuses on the Freidlin-Wentzell large deviation principle of the solutions of heat equation with memory driven by a Lévy-type noise. For this purpose, we exploit the recently introduced weak convergence approach.
| Citation: |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, New York, NY: Academic Press, 2003.
|
|
G. Amendola, M. Fabrizio and J. M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, New York: Springer, 2012.
|
|
J. Bao
and C. Yuan
, Large deviations for neutral functional SDEs with jumps, Stochastics, 87 (2015)
, 48-70.
doi: 10.1080/17442508.2014.914516.
|
|
V. Barbu
, S. Bonaccorsi
and L. Tubaro
, Existence and asymptotic behavior for hereditary stochastic evolution equations, Appl. Math. Optim., 69 (2014)
, 273-314.
doi: 10.1007/s00245-013-9224-2.
|
|
S. Bonaccorsi
, G. da Prato
and L. Tubaro
, Asymptotic behavior of a class of nonlinear stochastic heat equations with memory effects, SIAM J. Math. Anal., 44 (2012)
, 1562-1587.
doi: 10.1137/110841795.
|
|
A. Budhiraja
, J. Chen
and P. Dupuis
, Large deviations for stochastic partial differential equations driven by a Poisson random measure, Stochastic Processes Appl., 123 (2013)
, 523-560.
doi: 10.1016/j.spa.2012.09.010.
|
|
A. Budhiraja
, P. Dupuis
and V. Maroulas
, Variational representations for continuous time processes, Ann. Inst. Henri Poincaré, Probab. Stat., 47 (2011)
, 725-747.
doi: 10.1214/10-AIHP382.
|
|
T. Caraballo
, I. D. Chueshov
, P. Marín-Rubio
and J. Real
, Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory, Discrete Contin. Dyn. Syst., 18 (2007)
, 253-270.
doi: 10.3934/dcds.2007.18.253.
|
|
T. Caraballo
, J. Real
and I. D. Chueshov
, Pullback attractors for stochastic heat equations in materials with memory, Discrete Contin. Dyn. Syst., Ser. B, 9 (2008)
, 525-539.
doi: 10.3934/dcdsb.2008.9.525.
|
|
B. D. Coleman
and M. E. Gurtin
, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967)
, 199-208.
doi: 10.1007/BF01596912.
|
|
Z. Dong
, J. Xiong
, J. Zhai
and T. Zhang
, A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, J. Funct. Anal., 272 (2017)
, 227-254.
doi: 10.1016/j.jfa.2016.10.012.
|
|
C. Giorgi
and V. Pata
, Asymptotic behavior of a nonlinear hyperbolic heat equation with memory, NoDEA, Nonlinear Differ. Equ. Appl., 8 (2001)
, 157-171.
doi: 10.1007/PL00001443.
|
|
C. Giorgi
, V. Pata
and A. Marzocchi
, Asymptotic behavior of a semilinear problem in heat conduction with memory, NoDEA, Nonlinear Differ. Equ. Appl., 5 (1998)
, 333-354.
doi: 10.1007/s000300050049.
|
|
B. Goldys
, M. Röckner
and X. Zhang
, Martingale solutions and Markov selections for stochastic partial differential equations, Stochastic Processes Appl., 119 (2009)
, 1725-1764.
doi: 10.1016/j.spa.2008.08.009.
|
|
M. E. Gurtin
and B. C. Pipkin
, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968)
, 113-126.
doi: 10.1007/BF00281373.
|
|
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam: North-Holland Publishing Company, 1981.
|
|
Y. Li
, Y. Xie
and X. Zhang
, Large deviation principle for stochastic heat equation with memory, Discrete Contin. Dyn. Syst., 35 (2015)
, 5221-5237.
doi: 10.3934/dcds.2015.35.5221.
|
|
J. W. Nunziato
, On heat conduction in materials with memory, Q. Appl. Math., 29 (1971)
, 187-204.
doi: 10.1090/qam/295683.
|
|
J. Xiong and J. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by levy noise, 2017. Available from: https://www.e-publications.org/ims/submission/BEJ/user/submissionFile/27769?confirm=1f6bdfb2.
|
|
X. Yang, J. Zhai and T. Zhang, Large deviations for SPDEs of jump type, Stoch. Dyn. , 15 (2015), 1550026, 30 pp.
|
|
J. Zhai
and T. Zhang
, Large deviations for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises, Bernoulli, 21 (2015)
, 2351-2392.
doi: 10.3150/14-BEJ647.
|