April  2018, 38(4): 2029-2046. doi: 10.3934/dcds.2018082

Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems

1. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China

2. 

Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, Maribor, SI-2000 Maribor, Slovenia

Received  March 2017 Revised  August 2017 Published  January 2018

In this paper we research global dynamics and bifurcations of planar piecewise smooth quadratic quasi-homogeneous but non-homogeneous polynomial differential systems. We present sufficient and necessary conditions for the existence of a center in piecewise smooth quadratic quasi-homogeneous systems. Moreover, the center is global and non-isochronous, which cannot appear in smooth quadratic quasi-homogeneous systems. Then the global structures of piecewise smooth quadratic quasi-homogeneous but non-homogeneous systems are obtained. Finally we investigate limit cycle bifurcations of the piecewise quadratic quasi-homogeneous center and give the maximal number of limit cycles bifurcating from periodic orbits of the center by applying the Melnikov method for piecewise smooth near-Hamiltonian systems.

Citation: Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082
References:
[1]

A. AlgabaN. Fuentes and C. García, Center of quasihomogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovitch, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Israel Program for Scientific Translations, John Wiley and Sons, New York, 1973.  Google Scholar

[4]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.  Google Scholar

[5]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[6]

I. S. Berezin and N. P. Zhidkov, Computing Methods, Volume Ⅱ, Pergamon Press, Oxford, 1965.  Google Scholar

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.  Google Scholar

[8]

M. di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. NordmarkG. Tost and P. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.  doi: 10.1137/050625060.  Google Scholar

[9]

C. BuzziC. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 33 (2013), 3915-3936.  doi: 10.3934/dcds.2013.33.3915.  Google Scholar

[10]

X. ChenV. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076.  doi: 10.1016/j.jmaa.2015.07.036.  Google Scholar

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualititive Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht, 1988.  Google Scholar

[13]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear system, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.  Google Scholar

[14]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasihomogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[15]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[16]

F. Giannakopoulos and K. Pliete, Planar system of piecewise linear differential equations with a line of discontinuity, Nonlinearity, 14 (2001), 1611-1632.  doi: 10.1088/0951-7715/14/6/311.  Google Scholar

[17]

J. GinéM. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[18]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar

[19]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.  doi: 10.1063/1.531484.  Google Scholar

[20]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.   Google Scholar

[21]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equation, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[22]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns. , (2007), Art ID 98427, 10 pp.  Google Scholar

[23]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000.  Google Scholar

[24]

Yu. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.  Google Scholar

[25]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[26]

F. LiangM. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.  Google Scholar

[27]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[28]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dynam. Contin. Discrete Impuls. Systems. Ser. B Appl. Algorithms, 19 (2012), 325-335.   Google Scholar

[29]

J. Llibre and X. Zhang, Polynomial first integrals for quasihomogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[30]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.  Google Scholar

[31]

J. Reyn, Phase Portraits of Planar Quadratic Systems, Mathematics and Its Applications, 583, Springer, New York, 2007.  Google Scholar

[32]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.   Google Scholar

[33]

L. Wei and X. Zhang, Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems, Discrete Contin. Dyn. Syst., 36 (2016), 2803-2825.   Google Scholar

[34]

Y. Xiong and M. Han, Planar quasi-homogeneous polynomial systems with a given weight degree, Discrete Contin. Dyn. Syst., 36 (2016), 4015-4025.  doi: 10.3934/dcds.2016.36.4015.  Google Scholar

[35]

J. Yu and L. Zhang, Center of planar quasi-homogeneous polynomial differential systems, Preprint. Google Scholar

[36]

Y. ZouT. Kupper and W. J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Science, 16 (2006), 159-177.  doi: 10.1007/s00332-005-0606-8.  Google Scholar

show all references

References:
[1]

A. AlgabaN. Fuentes and C. García, Center of quasihomogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.  doi: 10.1016/j.nonrwa.2011.07.056.  Google Scholar

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.  doi: 10.1088/0951-7715/22/2/009.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovitch, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Israel Program for Scientific Translations, John Wiley and Sons, New York, 1973.  Google Scholar

[4]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.  Google Scholar

[5]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.  Google Scholar

[6]

I. S. Berezin and N. P. Zhidkov, Computing Methods, Volume Ⅱ, Pergamon Press, Oxford, 1965.  Google Scholar

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.  Google Scholar

[8]

M. di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. NordmarkG. Tost and P. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.  doi: 10.1137/050625060.  Google Scholar

[9]

C. BuzziC. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 33 (2013), 3915-3936.  doi: 10.3934/dcds.2013.33.3915.  Google Scholar

[10]

X. ChenV. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076.  doi: 10.1016/j.jmaa.2015.07.036.  Google Scholar

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualititive Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.  Google Scholar

[12]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht, 1988.  Google Scholar

[13]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear system, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.  Google Scholar

[14]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasihomogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.  Google Scholar

[15]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.  Google Scholar

[16]

F. Giannakopoulos and K. Pliete, Planar system of piecewise linear differential equations with a line of discontinuity, Nonlinearity, 14 (2001), 1611-1632.  doi: 10.1088/0951-7715/14/6/311.  Google Scholar

[17]

J. GinéM. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.  doi: 10.3934/dcds.2013.33.4531.  Google Scholar

[18]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.  Google Scholar

[19]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.  doi: 10.1063/1.531484.  Google Scholar

[20]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815.   Google Scholar

[21]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equation, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.  Google Scholar

[22]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns. , (2007), Art ID 98427, 10 pp.  Google Scholar

[23]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000.  Google Scholar

[24]

Yu. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.  Google Scholar

[25]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.  Google Scholar

[26]

F. LiangM. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.  Google Scholar

[27]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.  Google Scholar

[28]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dynam. Contin. Discrete Impuls. Systems. Ser. B Appl. Algorithms, 19 (2012), 325-335.   Google Scholar

[29]

J. Llibre and X. Zhang, Polynomial first integrals for quasihomogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.  doi: 10.1088/0951-7715/15/4/313.  Google Scholar

[30]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.  Google Scholar

[31]

J. Reyn, Phase Portraits of Planar Quadratic Systems, Mathematics and Its Applications, 583, Springer, New York, 2007.  Google Scholar

[32]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191.   Google Scholar

[33]

L. Wei and X. Zhang, Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems, Discrete Contin. Dyn. Syst., 36 (2016), 2803-2825.   Google Scholar

[34]

Y. Xiong and M. Han, Planar quasi-homogeneous polynomial systems with a given weight degree, Discrete Contin. Dyn. Syst., 36 (2016), 4015-4025.  doi: 10.3934/dcds.2016.36.4015.  Google Scholar

[35]

J. Yu and L. Zhang, Center of planar quasi-homogeneous polynomial differential systems, Preprint. Google Scholar

[36]

Y. ZouT. Kupper and W. J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Science, 16 (2006), 159-177.  doi: 10.1007/s00332-005-0606-8.  Google Scholar

Figure 1.  Existence of closed orbits for system $(I)$
Figure 2.  The global phase portraits of system $(I)$
Figure 3.  The global phase portraits of system $(III)$
Figure 4.  The closed orbit of system $(I)$ and its perturbation
Table 1.  Parameter conditions of Figure 2
Figure 2Parameter conditions
(1) $ b_1>0$, $a_1>0$ and $\tilde{a}_1>0$
(2) $ b_1>0$, $a_1>0$ and $\tilde{a}_1<0$
(3) $ b_1>0$, $a_1<0$ and $\tilde{a}_1<0$
(4) $ b_1>0$, $a_1<0$ and $\tilde{a}_1>0$
(5) $ b_1<0$, $a_1>0$ and $\tilde{a}_1>0$
(6) $ b_1<0$, $a_1>0$ and $\tilde{a}_1<0$
(7) $ b_1<0$, $a_1<0$ and $\tilde{a}_1<0$
(8) $ b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
Figure 2Parameter conditions
(1) $ b_1>0$, $a_1>0$ and $\tilde{a}_1>0$
(2) $ b_1>0$, $a_1>0$ and $\tilde{a}_1<0$
(3) $ b_1>0$, $a_1<0$ and $\tilde{a}_1<0$
(4) $ b_1>0$, $a_1<0$ and $\tilde{a}_1>0$
(5) $ b_1<0$, $a_1>0$ and $\tilde{a}_1>0$
(6) $ b_1<0$, $a_1>0$ and $\tilde{a}_1<0$
(7) $ b_1<0$, $a_1<0$ and $\tilde{a}_1<0$
(8) $ b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
Table 2.  Parameter conditions of Figure 3
Figure 3Parameter conditions
(1) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$
(2) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(3) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(4) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(5) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(6) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(7) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(8) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(9) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(10) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(11) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(12) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(13) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(14) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(15) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(16) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(17) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(18) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(19) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(20) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(21) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(22) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(23) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(24) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(25) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(26) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(27) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(28) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(29) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(30) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(31) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(32) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(33) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(34) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(35) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(36) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
Figure 3Parameter conditions
(1) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$
(2) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(3) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(4) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(5) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(6) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(7) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(8) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(9) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(10) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(11) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(12) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(13) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(14) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(15) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(16) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(17) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(18) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(19) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(20) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(21) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(22) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(23) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(24) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(25) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(26) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(27) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(28) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(29) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(30) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(31) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(32) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(33) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(34) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(35) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(36) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[3]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[6]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[7]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[10]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[11]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[12]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[13]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[18]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[19]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[20]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (135)
  • HTML views (283)
  • Cited by (0)

Other articles
by authors

[Back to Top]