April  2018, 38(4): 2029-2046. doi: 10.3934/dcds.2018082

Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems

1. 

School of Mathematical Sciences, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China

2. 

Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, Maribor, SI-2000 Maribor, Slovenia

Received  March 2017 Revised  August 2017 Published  January 2018

In this paper we research global dynamics and bifurcations of planar piecewise smooth quadratic quasi-homogeneous but non-homogeneous polynomial differential systems. We present sufficient and necessary conditions for the existence of a center in piecewise smooth quadratic quasi-homogeneous systems. Moreover, the center is global and non-isochronous, which cannot appear in smooth quadratic quasi-homogeneous systems. Then the global structures of piecewise smooth quadratic quasi-homogeneous but non-homogeneous systems are obtained. Finally we investigate limit cycle bifurcations of the piecewise quadratic quasi-homogeneous center and give the maximal number of limit cycles bifurcating from periodic orbits of the center by applying the Melnikov method for piecewise smooth near-Hamiltonian systems.

Citation: Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082
References:
[1]

A. AlgabaN. Fuentes and C. García, Center of quasihomogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.  doi: 10.1016/j.nonrwa.2011.07.056.

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.  doi: 10.1088/0951-7715/22/2/009.

[3]

A. A. Andronov, E. A. Leontovitch, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Israel Program for Scientific Translations, John Wiley and Sons, New York, 1973.

[4]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.

[5]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.

[6]

I. S. Berezin and N. P. Zhidkov, Computing Methods, Volume Ⅱ, Pergamon Press, Oxford, 1965.

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.

[8]

M. di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. NordmarkG. Tost and P. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.  doi: 10.1137/050625060.

[9]

C. BuzziC. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 33 (2013), 3915-3936.  doi: 10.3934/dcds.2013.33.3915.

[10]

X. ChenV. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076.  doi: 10.1016/j.jmaa.2015.07.036.

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualititive Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.

[12]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht, 1988.

[13]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear system, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.

[14]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasihomogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.

[15]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.

[16]

F. Giannakopoulos and K. Pliete, Planar system of piecewise linear differential equations with a line of discontinuity, Nonlinearity, 14 (2001), 1611-1632.  doi: 10.1088/0951-7715/14/6/311.

[17]

J. GinéM. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.  doi: 10.3934/dcds.2013.33.4531.

[18]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.

[19]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.  doi: 10.1063/1.531484.

[20]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815. 

[21]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equation, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.

[22]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns. , (2007), Art ID 98427, 10 pp.

[23]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000.

[24]

Yu. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.

[25]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.

[26]

F. LiangM. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.

[27]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.

[28]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dynam. Contin. Discrete Impuls. Systems. Ser. B Appl. Algorithms, 19 (2012), 325-335. 

[29]

J. Llibre and X. Zhang, Polynomial first integrals for quasihomogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.  doi: 10.1088/0951-7715/15/4/313.

[30]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.

[31]

J. Reyn, Phase Portraits of Planar Quadratic Systems, Mathematics and Its Applications, 583, Springer, New York, 2007.

[32]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191. 

[33]

L. Wei and X. Zhang, Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems, Discrete Contin. Dyn. Syst., 36 (2016), 2803-2825. 

[34]

Y. Xiong and M. Han, Planar quasi-homogeneous polynomial systems with a given weight degree, Discrete Contin. Dyn. Syst., 36 (2016), 4015-4025.  doi: 10.3934/dcds.2016.36.4015.

[35]

J. Yu and L. Zhang, Center of planar quasi-homogeneous polynomial differential systems, Preprint.

[36]

Y. ZouT. Kupper and W. J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Science, 16 (2006), 159-177.  doi: 10.1007/s00332-005-0606-8.

show all references

References:
[1]

A. AlgabaN. Fuentes and C. García, Center of quasihomogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 13 (2012), 419-431.  doi: 10.1016/j.nonrwa.2011.07.056.

[2]

A. AlgabaE. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 22 (2009), 396-420.  doi: 10.1088/0951-7715/22/2/009.

[3]

A. A. Andronov, E. A. Leontovitch, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems, Israel Program for Scientific Translations, John Wiley and Sons, New York, 1973.

[4]

A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.

[5]

W. AzizJ. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three, Adv. Math., 254 (2014), 233-250.  doi: 10.1016/j.aim.2013.12.006.

[6]

I. S. Berezin and N. P. Zhidkov, Computing Methods, Volume Ⅱ, Pergamon Press, Oxford, 1965.

[7]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.

[8]

M. di BernardoC. J. BuddA. R. ChampneysP. KowalczykA. NordmarkG. Tost and P. Piiroinen, Bifurcations in nonsmooth dynamical systems, SIAM Review, 50 (2008), 629-701.  doi: 10.1137/050625060.

[9]

C. BuzziC. Pessoa and J. Torregrosa, Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst., 33 (2013), 3915-3936.  doi: 10.3934/dcds.2013.33.3915.

[10]

X. ChenV. Romanovski and W. Zhang, Degenerate Hopf bifurcations in a family of FF-type switching systems, J. Math. Anal. Appl., 432 (2015), 1058-1076.  doi: 10.1016/j.jmaa.2015.07.036.

[11]

F. Dumortier, J. Llibre and J. C. Artés, Qualititive Theory of Planar Differential Systems, Springer-Verlag, Berlin, 2006.

[12]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Academic, Dordrecht, 1988.

[13]

E. FreireE. Ponce and F. Torres, Canonical discontinuous planar piecewise linear system, SIAM J. Appl. Dyn. Syst., 11 (2012), 181-211.  doi: 10.1137/11083928X.

[14]

B. GarcíaJ. Llibre and J. S. Pérez del Río, Planar quasihomogeneous polynomial differential systems and their integrability, J. Differential Equations, 255 (2013), 3185-3204.  doi: 10.1016/j.jde.2013.07.032.

[15]

L. GavrilovJ. Giné and M. Grau, On the cyclicity of weight-homogeneous centers, J. Differential Equations, 246 (2009), 3126-3135.  doi: 10.1016/j.jde.2009.02.010.

[16]

F. Giannakopoulos and K. Pliete, Planar system of piecewise linear differential equations with a line of discontinuity, Nonlinearity, 14 (2001), 1611-1632.  doi: 10.1088/0951-7715/14/6/311.

[17]

J. GinéM. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 33 (2013), 4531-4547.  doi: 10.3934/dcds.2013.33.4531.

[18]

J. GinéM. Grau and J. Llibre, Limit cycles bifurcating from planar polynomial quasi-homogeneous centers, J. Differential Equations, 259 (2015), 7135-7160.  doi: 10.1016/j.jde.2015.08.014.

[19]

A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys., 37 (1996), 1871-1893.  doi: 10.1063/1.531484.

[20]

M. Han and L. Sheng, Bifurcation of limit cycles in piecewise smooth systems via Melnikov function, J. Appl. Anal. Comput., 5 (2015), 809-815. 

[21]

M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differential Equation, 248 (2010), 2399-2416.  doi: 10.1016/j.jde.2009.10.002.

[22]

Y. Hu, On the integrability of quasihomogeneous systems and quasidegenerate infinity systems, Adv. Difference Eqns. , (2007), Art ID 98427, 10 pp.

[23]

M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin-Heidelberg, 2000.

[24]

Yu. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar Filippov systems, Internat. J. Bifur. Chaos, 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.

[25]

W. LiJ. LlibreJ. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homegeneous centers, J. Dyn. Diff. Eqns., 21 (2009), 133-152.  doi: 10.1007/s10884-008-9126-1.

[26]

F. LiangM. Han and V. Romanovski, Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop, Nonlinear Anal., 75 (2012), 4355-4374.  doi: 10.1016/j.na.2012.03.022.

[27]

H. LiangJ. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems, Nonlinear Dynam., 78 (2014), 1659-1681.  doi: 10.1007/s11071-014-1541-8.

[28]

J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dynam. Contin. Discrete Impuls. Systems. Ser. B Appl. Algorithms, 19 (2012), 325-335. 

[29]

J. Llibre and X. Zhang, Polynomial first integrals for quasihomogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.  doi: 10.1088/0951-7715/15/4/313.

[30]

O. Makarenkov and J. S. W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.

[31]

J. Reyn, Phase Portraits of Planar Quadratic Systems, Mathematics and Its Applications, 583, Springer, New York, 2007.

[32]

Y. TangL. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin. Dyn. Syst., 35 (2015), 2177-2191. 

[33]

L. Wei and X. Zhang, Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems, Discrete Contin. Dyn. Syst., 36 (2016), 2803-2825. 

[34]

Y. Xiong and M. Han, Planar quasi-homogeneous polynomial systems with a given weight degree, Discrete Contin. Dyn. Syst., 36 (2016), 4015-4025.  doi: 10.3934/dcds.2016.36.4015.

[35]

J. Yu and L. Zhang, Center of planar quasi-homogeneous polynomial differential systems, Preprint.

[36]

Y. ZouT. Kupper and W. J. Beyn, Generalized Hopf bifurcation for planar Filippov systems continuous at the origin, J. Nonlinear Science, 16 (2006), 159-177.  doi: 10.1007/s00332-005-0606-8.

Figure 1.  Existence of closed orbits for system $(I)$
Figure 2.  The global phase portraits of system $(I)$
Figure 3.  The global phase portraits of system $(III)$
Figure 4.  The closed orbit of system $(I)$ and its perturbation
Table 1.  Parameter conditions of Figure 2
Figure 2Parameter conditions
(1) $ b_1>0$, $a_1>0$ and $\tilde{a}_1>0$
(2) $ b_1>0$, $a_1>0$ and $\tilde{a}_1<0$
(3) $ b_1>0$, $a_1<0$ and $\tilde{a}_1<0$
(4) $ b_1>0$, $a_1<0$ and $\tilde{a}_1>0$
(5) $ b_1<0$, $a_1>0$ and $\tilde{a}_1>0$
(6) $ b_1<0$, $a_1>0$ and $\tilde{a}_1<0$
(7) $ b_1<0$, $a_1<0$ and $\tilde{a}_1<0$
(8) $ b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
Figure 2Parameter conditions
(1) $ b_1>0$, $a_1>0$ and $\tilde{a}_1>0$
(2) $ b_1>0$, $a_1>0$ and $\tilde{a}_1<0$
(3) $ b_1>0$, $a_1<0$ and $\tilde{a}_1<0$
(4) $ b_1>0$, $a_1<0$ and $\tilde{a}_1>0$
(5) $ b_1<0$, $a_1>0$ and $\tilde{a}_1>0$
(6) $ b_1<0$, $a_1>0$ and $\tilde{a}_1<0$
(7) $ b_1<0$, $a_1<0$ and $\tilde{a}_1<0$
(8) $ b_1<0$, $a_1<0$ and $\tilde{a}_1>0$
Table 2.  Parameter conditions of Figure 3
Figure 3Parameter conditions
(1) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$
(2) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(3) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(4) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(5) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(6) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(7) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(8) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(9) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(10) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(11) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(12) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(13) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(14) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(15) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(16) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(17) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(18) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(19) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(20) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(21) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(22) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(23) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(24) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(25) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(26) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(27) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(28) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(29) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(30) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(31) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(32) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(33) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(34) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(35) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(36) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
Figure 3Parameter conditions
(1) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $\tilde{a}_{31}>2$
(2) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(3) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(4) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(5) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(6) $a_{31}<0$, $ b_3<0$, $a_{31}\ge 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(7) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(8) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(9) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(10) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(11) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(12) $a_{31}<0$, $ b_3<0$, $a_{31}< 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(13) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(14) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(15) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(16) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(17) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(18) $a_{31}>0$, $ b_3>0$, $a_{31}\le 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(19) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(20) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(21) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(22) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(23) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(24) $a_{31}>0$, $ b_3>0$, $a_{31}> 2b_3$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(25) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(26) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(27) $a_{31}>0$, $ b_3<0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(28) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(29) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(30) $a_{31}>0$, $ b_3<0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
(31) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}>2$
(32) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $0<\tilde{a}_{31}\le 2$
(33) $a_{31}<0$, $ b_3>0$, $a_{32}<0$ and $ \tilde{a}_{31}<0$
(34) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}>2$
(35) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $0<\tilde{a}_{31}\le 2$
(36) $a_{31}<0$, $ b_3>0$, $a_{32}>0$ and $ \tilde{a}_{31}<0$
[1]

Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015

[2]

Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225

[3]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[4]

Hebai Chen, Xingwu Chen, Jianhua Xie. Global phase portrait of a degenerate Bogdanov-Takens system with symmetry. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1273-1293. doi: 10.3934/dcdsb.2017062

[5]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[6]

Hang Zheng, Yonghui Xia. Chaotic threshold of a class of hybrid piecewise-smooth system by an impulsive effect via Melnikov-type function. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021319

[7]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[8]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[9]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[10]

Antonio Garijo, Armengol Gasull, Xavier Jarque. Local and global phase portrait of equation $\dot z=f(z)$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 309-329. doi: 10.3934/dcds.2007.17.309

[11]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[12]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[13]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure and Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[14]

Zecen He, Haihua Liang, Xiang Zhang. Limit cycles and global dynamic of planar cubic semi-quasi-homogeneous systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 421-441. doi: 10.3934/dcdsb.2021049

[15]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[16]

Tao Li, Jaume Llibre. Limit cycles of piecewise polynomial differential systems with the discontinuity line xy = 0. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3887-3909. doi: 10.3934/cpaa.2021136

[17]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[18]

Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021264

[19]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[20]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (253)
  • HTML views (295)
  • Cited by (1)

Other articles
by authors

[Back to Top]