April  2018, 38(4): 2065-2078. doi: 10.3934/dcds.2018084

The return times property for the tail on logarithm-type spaces

Departament de Matemàtiques i Informàtica, Universitat de Barcelona, 08007 Barcelona, Spain

Received  April 2017 Revised  October 2017 Published  January 2018

Fund Project: The authors were supported by grants MTM2016-75196-P (MINECO/FEDER, UE) and 2014SGR289.

Given a dynamical system
$(Ω,Σ,μ, τ)$
with
$μ$
a non-atomic probability measure and
$τ$
an invertible measure preserving ergodic transformation, we prove that the maximal operator, considered by I. Assani, Z. Buczolich and R. D. Mauldin in 2005,
${N^*}f\left( x \right) = \mathop {\sup }\limits_{\alpha > 0} \alpha \# \left\{ {k \ge 1:\frac{{\left| {f\left( {{\tau ^k}x} \right)} \right|}}{k} > \alpha } \right\}$
satisfies that
${N^*}:\left[ {L \log_3 L (μ)} \right] \longrightarrow L^{1, ∞}(μ)$
is bounded where the space
$\left[ {L \log_3 L (μ)} \right]$
is defined by the condition
$\Vert f\Vert_{\left[ {L \log_3 L (μ)} \right]} = ∈t_0^1 \frac{\sup\limits_{t≤q y}tf_μ^*(t)}{y} \log_3 \frac 1y dy < ∞,$
with
$\log_3 x = 1+\log_+\log_+\log_+ x$
and
$f^*_μ$
the decreasing rearrangement of
$f$
with respect to
$μ$
. This space is near
$L \log_3 L (μ)$
, which is the optimal Orlicz space on which such boundedness can hold. As a consequence, the space
$\left[ {L \log_3 L (μ)} \right]$
satisfies the Return Times Property for the Tail; that is, for every
$f∈\left[ {L \log_3 L (μ)} \right]$
, there exists a set
$X_0$
so that
$μ(X_0) = 1$
and, for all
$x_0∈ X_0$
, all dynamical systems
$(Y,\mathcal{C},ν, S)$
and all
$g∈ L^1(ν)$
, the sequence
$R_ng(y) = \frac1nf(τ^nx_0)g(S^ny) \overset{n\to∞}\longrightarrow 0,\;\;\;\;\;\; ν\text{-a.e. } y∈ Y.$
Citation: María Jesús Carro, Carlos Domingo-Salazar. The return times property for the tail on logarithm-type spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2065-2078. doi: 10.3934/dcds.2018084
References:
[1]

N. Yu Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.   Google Scholar

[2]

J. Arias-de-Reyna, Pointwise convergence of Fourier series, J. London Math. Soc., 65 (2002), 139-153.  doi: 10.1112/S0024610701002824.  Google Scholar

[3]

I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J., 88 (1997), 217-246.   Google Scholar

[4]

I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math., 3A (1997), 15-30.   Google Scholar

[5]

I. AssaniZ. Buczolich and R. D. Mauldin, An L1 counting problem in ergodic theory, J. Anal. Math., 95 (2005), 221-241.  doi: 10.1007/BF02791503.  Google Scholar

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.  Google Scholar

[7]

J. Bourgain, Return time sequences of dynamical systems, IHES, Preprint, 1988. Google Scholar

[8]

J. Bourgain, Temps de retour pour des systèmes dynamiques, D. R. Acad. Sci. Paris Sér. I Math, 306 (1988), 483-485.   Google Scholar

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, With an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 5-45.   Google Scholar

[10]

M. J. Carro, New extrapolation estimates, J. Funct. Anal., 174 (2000), 155-166.  doi: 10.1006/jfan.2000.3568.  Google Scholar

[11]

M. J. Carro and C. Domingo-Salazar Endpoint estimates for Rubio de Francia operators, Trans. Amer. Math. Soc. , (2017), to appear. Google Scholar

[12]

M. J. CarroL. Grafakos and J. Soria, Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal., 269 (2015), 1203-1233.  doi: 10.1016/j.jfa.2015.06.005.  Google Scholar

[13]

M. J. Carro, M. Lorente and F. J. Martín-Reyes, A counting problem in ergodic theory and extrapolation for one-sided weights, Journal d'Analyse Mathématique, (2016), to appear. Google Scholar

[14]

M. J. Carro and P. Tradacete, Extrapolation on $L^{p,∞}(μ) $, J. Funct. Anal., 265 (2013), 1840-1869.   Google Scholar

[15]

H. H. ChungR. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on $ L(p,q)$ spaces with weights, Indiana Univ. Math. J., 31 (1982), 109-120.  doi: 10.1512/iumj.1982.31.31012.  Google Scholar

[16]

C. DemeterM. T. LaceyT. Tao and C. Thiele, Breaking the duality in the return times theorem, Duke Math. J., 143 (2008), 281-355.  doi: 10.1215/00127094-2008-020.  Google Scholar

[17]

C. Demeter and A. Quas, Weak-L1 estimates and ergodic theorems, New York J. Math., 10 (2004), 169-174.   Google Scholar

[18]

L. Ephremidze, The rearrangement inequality for the ergodic maximal function, Georgian Math. J., 8 (2001), 727-732.   Google Scholar

[19]

R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284.   Google Scholar

[20]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[21]

K. Noonan, Birkhoff's theorem and the Return Times for the Tail, Master Thesis, University of North Carolina, 2002.  Google Scholar

[22]

P. Ortega, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for function in Lorentz spaces, Tohoku Math. J., 45 (1993), 437-446.  doi: 10.2748/tmj/1178225894.  Google Scholar

[23]

J. L. Rubio de Francia, Factorization theory and $ A_p$ weights, Amer. J. Math., 106 (1984), 533-547.  doi: 10.2307/2374284.  Google Scholar

[24]

D. J. Rudolph, A joinings proof of Bourgain's return time theorem, Ergodic Theory Dynam. Systems, 14 (1994), 197-203.   Google Scholar

[25]

D. J. Rudolph, Fully generic sequences and a multiple-term return-times theorem, Invent. Math., 131 (1998), 199-228.   Google Scholar

[26]

E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc., 140 (1969), 35-54.  doi: 10.1090/S0002-9947-1969-0241685-X.  Google Scholar

[27]

S. Yano, Notes on Fourier analysis XXIX: An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296-305.  doi: 10.2969/jmsj/00320296.  Google Scholar

show all references

References:
[1]

N. Yu Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.   Google Scholar

[2]

J. Arias-de-Reyna, Pointwise convergence of Fourier series, J. London Math. Soc., 65 (2002), 139-153.  doi: 10.1112/S0024610701002824.  Google Scholar

[3]

I. Assani, Strong laws for weighted sums of independent identically distributed random variables, Duke Math. J., 88 (1997), 217-246.   Google Scholar

[4]

I. Assani, Convergence of the p-Series for stationary sequences, New York J. Math., 3A (1997), 15-30.   Google Scholar

[5]

I. AssaniZ. Buczolich and R. D. Mauldin, An L1 counting problem in ergodic theory, J. Anal. Math., 95 (2005), 221-241.  doi: 10.1007/BF02791503.  Google Scholar

[6]

C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988.  Google Scholar

[7]

J. Bourgain, Return time sequences of dynamical systems, IHES, Preprint, 1988. Google Scholar

[8]

J. Bourgain, Temps de retour pour des systèmes dynamiques, D. R. Acad. Sci. Paris Sér. I Math, 306 (1988), 483-485.   Google Scholar

[9]

J. Bourgain, Pointwise ergodic theorems for arithmetic sets, With an appendix by the author, H. Furstenberg, Y. Katznelson, and D. S. Ornstein, Inst. Hautes Études Sci. Publ. Math., 69 (1989), 5-45.   Google Scholar

[10]

M. J. Carro, New extrapolation estimates, J. Funct. Anal., 174 (2000), 155-166.  doi: 10.1006/jfan.2000.3568.  Google Scholar

[11]

M. J. Carro and C. Domingo-Salazar Endpoint estimates for Rubio de Francia operators, Trans. Amer. Math. Soc. , (2017), to appear. Google Scholar

[12]

M. J. CarroL. Grafakos and J. Soria, Weighted weak-type (1, 1) estimates via Rubio de Francia extrapolation, J. Funct. Anal., 269 (2015), 1203-1233.  doi: 10.1016/j.jfa.2015.06.005.  Google Scholar

[13]

M. J. Carro, M. Lorente and F. J. Martín-Reyes, A counting problem in ergodic theory and extrapolation for one-sided weights, Journal d'Analyse Mathématique, (2016), to appear. Google Scholar

[14]

M. J. Carro and P. Tradacete, Extrapolation on $L^{p,∞}(μ) $, J. Funct. Anal., 265 (2013), 1840-1869.   Google Scholar

[15]

H. H. ChungR. Hunt and D. S. Kurtz, The Hardy-Littlewood maximal function on $ L(p,q)$ spaces with weights, Indiana Univ. Math. J., 31 (1982), 109-120.  doi: 10.1512/iumj.1982.31.31012.  Google Scholar

[16]

C. DemeterM. T. LaceyT. Tao and C. Thiele, Breaking the duality in the return times theorem, Duke Math. J., 143 (2008), 281-355.  doi: 10.1215/00127094-2008-020.  Google Scholar

[17]

C. Demeter and A. Quas, Weak-L1 estimates and ergodic theorems, New York J. Math., 10 (2004), 169-174.   Google Scholar

[18]

L. Ephremidze, The rearrangement inequality for the ergodic maximal function, Georgian Math. J., 8 (2001), 727-732.   Google Scholar

[19]

R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math., 71 (1982), 277-284.   Google Scholar

[20]

B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.  doi: 10.1090/S0002-9947-1972-0293384-6.  Google Scholar

[21]

K. Noonan, Birkhoff's theorem and the Return Times for the Tail, Master Thesis, University of North Carolina, 2002.  Google Scholar

[22]

P. Ortega, Weights for the ergodic maximal operator and a.e. convergence of the ergodic averages for function in Lorentz spaces, Tohoku Math. J., 45 (1993), 437-446.  doi: 10.2748/tmj/1178225894.  Google Scholar

[23]

J. L. Rubio de Francia, Factorization theory and $ A_p$ weights, Amer. J. Math., 106 (1984), 533-547.  doi: 10.2307/2374284.  Google Scholar

[24]

D. J. Rudolph, A joinings proof of Bourgain's return time theorem, Ergodic Theory Dynam. Systems, 14 (1994), 197-203.   Google Scholar

[25]

D. J. Rudolph, Fully generic sequences and a multiple-term return-times theorem, Invent. Math., 131 (1998), 199-228.   Google Scholar

[26]

E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc., 140 (1969), 35-54.  doi: 10.1090/S0002-9947-1969-0241685-X.  Google Scholar

[27]

S. Yano, Notes on Fourier analysis XXIX: An extrapolation theorem, J. Math. Soc. Japan, 3 (1951), 296-305.  doi: 10.2969/jmsj/00320296.  Google Scholar

[1]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[2]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[3]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[4]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[5]

Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014

[6]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[9]

Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171

[10]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[11]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[12]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020293

[13]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[14]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[15]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[16]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[17]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[18]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[19]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[20]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (114)
  • HTML views (259)
  • Cited by (0)

Other articles
by authors

[Back to Top]