\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Minimization of the lowest eigenvalue for a vibrating beam

The third author is supported by the National Natural Science Foundation of China (Grant No. 11671378) and the Fund of UCAS. The fourth author is supported by the National Natural Science Foundation of China (Grants No. 11371047 and No. 11422111)

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • In this paper we solve the minimization problem of the lowest eigenvalue for a vibrating beam. Firstly, based on the variational method, we establish the basic theory of the lowest eigenvalue for the fourth order measure differential equation (MDE). Secondly, we build the relationship between the minimization problem of the lowest eigenvalue for the ODE and the one for the MDE. Finally, with the help of this built relationship, we find the explicit optimal bound of the lowest eigenvalue for a vibrating beam.

    Mathematics Subject Classification: Primary: 34L15; Secondary: 34L40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Function $\mathbf{L}(r)$ of $r$

  •   M. Carter and B. van Brunt, The Lebesgue-Stieltjes Integral: A Practical Introduction Springer-Verlag, New York, 2000.
      R. Courant and D. Hilbert, Methods of Mathematical Physics Wiley, New York, 1953.
      Z. Halas  and  M. Tvrdý , Continuous dependence of solutions of generalized linear differential equations on a parameter, Funct. Differ. Equ., 16 (2009) , 299-313. 
      X. Jiang , K. Liu , G. Meng  and  Z. She , Continuity of the eigenvalues for a vibrating beam, Appl. Math. Lett., 67 (2017) , 60-66.  doi: 10.1016/j.aml.2016.12.006.
      R. E. Megginson, An Introduction to Banach Space Theory Graduate Texts in Mathematics, 183 Springer-Verlag, New York, 1998.
      G. Meng , Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015) , 1991-2002.  doi: 10.1090/S0002-9939-2015-12304-0.
      G. Meng , P. Yan  and  M. Zhang , Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156 (2013) , 294-319.  doi: 10.1007/s10957-012-0125-3.
      G. Meng  and  M. Zhang , Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Eqautions, 254 (2013) , 2196-2232.  doi: 10.1016/j.jde.2012.12.001.
      A. B. Mingarelli, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions Lecture Notes Math., Vol. 989 Springer-Verlag, New York, 1983.
      P. Savoye , Equimeasurable rearrangements of functions and fourth order boundary value problems, Rocky Mountain J. Math., 26 (1996) , 281-293.  doi: 10.1216/rmjm/1181072116.
      Š. Schwabik, Generalized Ordinary Differential Equations World Scientific, Singapore, 1992.
      M. Tvrdý , Linear distributional differential equations of the second order, Math. Bohem., 119 (1994) , 415-436. 
      M. Tvrdý , Differential and integral equations in the space of regulated functions, Mem. Differential Equations Math. Phys., 25 (2002) , 1-104. 
      Q. Wei , G. Meng  and  M. Zhang , Extremal values of eigenvalues of Sturm-Liouville operators with potentials in L1 balls, J. Differential Equations, 247 (2009) , 364-400.  doi: 10.1016/j.jde.2009.04.008.
      P. Yan  and  M. Zhang , Continuity in weak topology and extremal problems of eigenvalues of the p-Laplacian, Trans. Amer. Math. Soc., 363 (2011) , 2003-2028.  doi: 10.1090/S0002-9947-2010-05051-2.
      M. Zhang , Extremal values of smallest eigenvalues of Hill's operators with potentials in L1 balls, J. Differential Equations, 246 (2009) , 4188-4220.  doi: 10.1016/j.jde.2009.03.016.
      M. Zhang , Minimization of the zeroth Neumann eigenvalues with integrable potentials, Ann. Inst. H.Poincaré Anal. Non Linéaire, 29 (2012) , 501-523.  doi: 10.1016/j.anihpc.2012.01.007.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(519) PDF downloads(265) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return