\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Invariance entropy, quasi-stationary measures and control sets

Research supported by DFG grant 124/19-2

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • For control systems in discrete time, this paper discusses measure-theoretic invariance entropy for a subset Q of the state space with respect to a quasi-stationary measure obtained by endowing the control range with a probability measure. The main results show that this entropy is invariant under measurable transformations and that it is already determined by certain subsets of Q which are characterized by controllability properties.

    Mathematics Subject Classification: Primary: 93C41, 37A35; Secondary: 94A17.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure .  Extremal graphs for (24) and the set $[d(\alpha),0.5]$ in $Q = [0.2,0.5\dot{]}$ (here $A = 0.05,\sigma = 0.1$ and $\alpha = 0.08$)

    Figure .  Extremal graphs for (44) and the $W$-control sets $D_1(\alpha) = [a(\alpha),b(\alpha))$ and $D_2(\alpha) = [d(\alpha),0.7)$ in $Q = [0.1,0.7\dot {]}$ (here $A = 0.05,\sigma = 0.1$ and $\alpha = 0.08$)

  •   F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163.
      ———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622. doi: 10.1137/0331075.
      M. Benaïm, B. Cloez and F. Panloup, Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016.
      T. Bogenschütz , Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93) , 99-116. 
      P. Collett, S. Martinez and J. San Martin, Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013.
      F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016. doi: 10.1017/etds.2016.72.
      ———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016.
      F. Colonius , J.-A. Homburg  and  W. Kliemann , Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010) , 127-141.  doi: 10.1080/10236190802653646.
      F. Colonius  and  R. Lettau , Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016) , 701-722.  doi: 10.1093/imamci/dnv004.
      A. da Silva  and  C. Kawan , Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016) , 97-136. 
      M. F. Demers, Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015.
      M. F. Demers  and  L.-S. Young , Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006) , 377-397.  doi: 10.1088/0951-7715/19/2/008.
      E.A. van Doorn  and  P. Pollett , Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009) , 191-204. 
      B. Jakubczyk  and  E.D. Sontag , Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990) , 1-33.  doi: 10.1137/0328001.
      A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.
      C. Kawan , Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011) , 732-751.  doi: 10.1137/100783340.
      ———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013.
      S. Méléard  and  D. Villemonais , Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012) , 340-410.  doi: 10.1214/11-PS191.
      G. Nair , R.J. Evans , I. Mareels  and  W. Moran , Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004) , 1585-1597.  doi: 10.1109/TAC.2004.834105.
      M. Patrão  and  L. San Martin , Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007) , 155-180. 
      P. Pollett, Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015.
      F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, Journal Math. Phys. , 57 (2016), 052704, 27pp.
      E. Sontag  and  F. Wirth , Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998) , 81-88.  doi: 10.1016/S0167-6911(97)00117-5.
      M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge University Press, 2016.
      P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 1982.
      F. Wirth, Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995.
      F. Wirth , Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998) , 267-272.  doi: 10.1016/S1474-6670(17)40346-6.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(475) PDF downloads(202) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return