
-
Previous Article
Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting
- DCDS Home
- This Issue
-
Next Article
Minimization of the lowest eigenvalue for a vibrating beam
Invariance entropy, quasi-stationary measures and control sets
Institut für Mathematik, Universität Augsburg, Universitätsstrasse 14,86159 Augsburg, Germany |
For control systems in discrete time, this paper discusses measure-theoretic invariance entropy for a subset Q of the state space with respect to a quasi-stationary measure obtained by endowing the control range with a probability measure. The main results show that this entropy is invariant under measurable transformations and that it is already determined by certain subsets of Q which are characterized by controllability properties.
References:
[1] |
F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163. |
[2] |
———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622.
doi: 10.1137/0331075. |
[3] |
M. Benaïm, B. Cloez and F. Panloup,
Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016. |
[4] |
T. Bogenschütz,
Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93), 99-116.
|
[5] |
P. Collett, S. Martinez and J. San Martin,
Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013. |
[6] |
F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016.
doi: 10.1017/etds.2016.72. |
[7] |
———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016. |
[8] |
F. Colonius, J.-A. Homburg and W. Kliemann,
Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010), 127-141.
doi: 10.1080/10236190802653646. |
[9] |
F. Colonius and R. Lettau,
Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016), 701-722.
doi: 10.1093/imamci/dnv004. |
[10] |
A. da Silva and C. Kawan,
Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016), 97-136.
|
[11] |
M. F. Demers,
Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015. |
[12] |
M. F. Demers and L.-S. Young,
Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.
doi: 10.1088/0951-7715/19/2/008. |
[13] |
E.A. van Doorn and P. Pollett,
Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009), 191-204.
|
[14] |
B. Jakubczyk and E.D. Sontag,
Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990), 1-33.
doi: 10.1137/0328001. |
[15] |
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995. |
[16] |
C. Kawan,
Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), 732-751.
doi: 10.1137/100783340. |
[17] |
———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013. |
[18] |
S. Méléard and D. Villemonais,
Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012), 340-410.
doi: 10.1214/11-PS191. |
[19] |
G. Nair, R.J. Evans, I. Mareels and W. Moran,
Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004), 1585-1597.
doi: 10.1109/TAC.2004.834105. |
[20] |
M. Patrão and L. San Martin,
Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007), 155-180.
|
[21] |
P. Pollett,
Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015. |
[22] |
F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions,
Journal Math. Phys. , 57 (2016), 052704, 27pp. |
[23] |
E. Sontag and F. Wirth,
Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998), 81-88.
doi: 10.1016/S0167-6911(97)00117-5. |
[24] |
M. Viana and K. Oliveira,
Foundations of Ergodic Theory, Cambridge University Press, 2016. |
[25] |
P. Walters,
An Introduction to Ergodic Theory, Springer-Verlag, 1982. |
[26] |
F. Wirth,
Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995. |
[27] |
F. Wirth,
Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998), 267-272.
doi: 10.1016/S1474-6670(17)40346-6. |
show all references
References:
[1] |
F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163. |
[2] |
———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622.
doi: 10.1137/0331075. |
[3] |
M. Benaïm, B. Cloez and F. Panloup,
Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016. |
[4] |
T. Bogenschütz,
Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93), 99-116.
|
[5] |
P. Collett, S. Martinez and J. San Martin,
Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013. |
[6] |
F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016.
doi: 10.1017/etds.2016.72. |
[7] |
———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016. |
[8] |
F. Colonius, J.-A. Homburg and W. Kliemann,
Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010), 127-141.
doi: 10.1080/10236190802653646. |
[9] |
F. Colonius and R. Lettau,
Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016), 701-722.
doi: 10.1093/imamci/dnv004. |
[10] |
A. da Silva and C. Kawan,
Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016), 97-136.
|
[11] |
M. F. Demers,
Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015. |
[12] |
M. F. Demers and L.-S. Young,
Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.
doi: 10.1088/0951-7715/19/2/008. |
[13] |
E.A. van Doorn and P. Pollett,
Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009), 191-204.
|
[14] |
B. Jakubczyk and E.D. Sontag,
Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990), 1-33.
doi: 10.1137/0328001. |
[15] |
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995. |
[16] |
C. Kawan,
Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), 732-751.
doi: 10.1137/100783340. |
[17] |
———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013. |
[18] |
S. Méléard and D. Villemonais,
Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012), 340-410.
doi: 10.1214/11-PS191. |
[19] |
G. Nair, R.J. Evans, I. Mareels and W. Moran,
Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004), 1585-1597.
doi: 10.1109/TAC.2004.834105. |
[20] |
M. Patrão and L. San Martin,
Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007), 155-180.
|
[21] |
P. Pollett,
Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015. |
[22] |
F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions,
Journal Math. Phys. , 57 (2016), 052704, 27pp. |
[23] |
E. Sontag and F. Wirth,
Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998), 81-88.
doi: 10.1016/S0167-6911(97)00117-5. |
[24] |
M. Viana and K. Oliveira,
Foundations of Ergodic Theory, Cambridge University Press, 2016. |
[25] |
P. Walters,
An Introduction to Ergodic Theory, Springer-Verlag, 1982. |
[26] |
F. Wirth,
Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995. |
[27] |
F. Wirth,
Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998), 267-272.
doi: 10.1016/S1474-6670(17)40346-6. |


[1] |
Adriano Da Silva, Christoph Kawan. Invariance entropy of hyperbolic control sets. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 97-136. doi: 10.3934/dcds.2016.36.97 |
[2] |
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 361-382. doi: 10.3934/dcdsb.2003.3.361 |
[3] |
Christoph Kawan. Upper and lower estimates for invariance entropy. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 169-186. doi: 10.3934/dcds.2011.30.169 |
[4] |
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 |
[5] |
François Blanchard, Wen Huang. Entropy sets, weakly mixing sets and entropy capacity. Discrete and Continuous Dynamical Systems, 2008, 20 (2) : 275-311. doi: 10.3934/dcds.2008.20.275 |
[6] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control and Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[7] |
Peter E. Kloeden. Asymptotic invariance and the discretisation of nonautonomous forward attracting sets. Journal of Computational Dynamics, 2016, 3 (2) : 179-189. doi: 10.3934/jcd.2016009 |
[8] |
S. Astels. Thickness measures for Cantor sets. Electronic Research Announcements, 1999, 5: 108-111. |
[9] |
Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185 |
[10] |
Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811 |
[11] |
Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417 |
[12] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[13] |
Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29 (4) : 2819-2827. doi: 10.3934/era.2021015 |
[14] |
Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022010 |
[15] |
Martin Gugat, Rüdiger Schultz, Michael Schuster. Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15 (2) : 171-195. doi: 10.3934/nhm.2020008 |
[16] |
Yaotang Li, Suhua Li. Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. Journal of Industrial and Management Optimization, 2019, 15 (2) : 507-516. doi: 10.3934/jimo.2018054 |
[17] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[18] |
Yujun Ju, Dongkui Ma, Yupan Wang. Topological entropy of free semigroup actions for noncompact sets. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 995-1017. doi: 10.3934/dcds.2019041 |
[19] |
Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286 |
[20] |
Francesco Grotto, Umberto Pappalettera. Gaussian invariant measures and stationary solutions of 2D primitive equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2683-2699. doi: 10.3934/dcdsb.2021154 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]