For control systems in discrete time, this paper discusses measure-theoretic invariance entropy for a subset Q of the state space with respect to a quasi-stationary measure obtained by endowing the control range with a probability measure. The main results show that this entropy is invariant under measurable transformations and that it is already determined by certain subsets of Q which are characterized by controllability properties.
Citation: |
F. Albertini and E. D. Sontag, Some connections between chaotic dynamical systems and control systems, in Proc. European Control Conference, Grenoble, 1991,158-163.
![]() |
|
———, Discrete-time transitivity and accessibility: Analytic systems, SIAM J. Control Optim., 31 (1993), 1599-1622.
doi: 10.1137/0331075.![]() ![]() ![]() |
|
M. Benaïm, B. Cloez and F. Panloup,
Stochastic Approximation of Quasi-Stationary Distributions on Compact Spaces and Applications, arXiv: 1606.06477v2 [math. PR] 6 Dec 2016.
![]() |
|
T. Bogenschütz
, Entropy, pressure, and a variational principle for random dynamical systems, Random and Computational Dynamics, 1 (1992/93)
, 99-116.
![]() ![]() |
|
P. Collett, S. Martinez and J. San Martin,
Quasi-Stationary Distributions: Markov Chains, Diffusions, and Dynamical Systems, Springer-Verlag, Berlin, 2013.
![]() ![]() |
|
F. Colonius, Metric invariance entropy and conditionally invariant measures Ergodic Theory and Dynamical Systems, (2016). First published online: 20 October 2016.
doi: 10.1017/etds.2016.72.![]() ![]() |
|
———, Metric Invariance Entropy and Relatively Invariant Control Sets, in Proceedings of the 55th IEEE Conference on Decision and Control (Las Vegas, December 12-14,2016), 2016.
![]() |
|
F. Colonius
, J.-A. Homburg
and W. Kliemann
, Near invariance and local transience for random diffeomorphisms, J. Difference Equations and Applications, 16 (2010)
, 127-141.
doi: 10.1080/10236190802653646.![]() ![]() ![]() |
|
F. Colonius
and R. Lettau
, Relative controllability properties, IMA Journal of Mathematical Control and Information, 33 (2016)
, 701-722.
doi: 10.1093/imamci/dnv004.![]() ![]() ![]() |
|
A. da Silva
and C. Kawan
, Invariance entropy of hyperbolic control sets, Discrete Cont. Dyn. Syst. A, 36 (2016)
, 97-136.
![]() ![]() |
|
M. F. Demers,
Introductory Lectures on Open Systems, given as part of the LMS-CMI Research School at Loughborough University, April 13-17,2015.
![]() |
|
M. F. Demers
and L.-S. Young
, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006)
, 377-397.
doi: 10.1088/0951-7715/19/2/008.![]() ![]() ![]() |
|
E.A. van Doorn
and P. Pollett
, Quasi-stationary distributions for reducible absorbing Markov chains in discrete time, Markov Processes and Related Fields, 15 (2009)
, 191-204.
![]() ![]() |
|
B. Jakubczyk
and E.D. Sontag
, Controllability of nonlinear discrete time systems: A Lie algebraic approach, SIAM J. Control Optim., 28 (1990)
, 1-33.
doi: 10.1137/0328001.![]() ![]() ![]() |
|
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1995.
![]() ![]() |
|
C. Kawan
, Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011)
, 732-751.
doi: 10.1137/100783340.![]() ![]() ![]() |
|
———, Invariance Entropy for Deterministic Control Systems. An Introduction, vol. 2089 of Lecture Notes in Mathematics, Springer-Verlag, 2013.
![]() ![]() |
|
S. Méléard
and D. Villemonais
, Quasi-stationary distributions and population processes, Probability Surveys, 9 (2012)
, 340-410.
doi: 10.1214/11-PS191.![]() ![]() ![]() |
|
G. Nair
, R.J. Evans
, I. Mareels
and W. Moran
, Topological feedback entropy and nonlinear stabilization, IEEE Trans. Aut. Control, 49 (2004)
, 1585-1597.
doi: 10.1109/TAC.2004.834105.![]() ![]() ![]() |
|
M. Patrão
and L. San Martin
, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (2007)
, 155-180.
![]() ![]() |
|
P. Pollett,
Quasi-stationary distributions: a bibliography. http://www.maths.uq.edu.au/~pkp/papers/qsds/qsds.pdf, 2015.
![]() |
|
F. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions,
Journal Math. Phys. , 57 (2016), 052704, 27pp.
![]() ![]() |
|
E. Sontag
and F. Wirth
, Remarks on universal nonsingular controls for discrete-time systems, Sys. Control Lett., 33 (1998)
, 81-88.
doi: 10.1016/S0167-6911(97)00117-5.![]() ![]() ![]() |
|
M. Viana and K. Oliveira,
Foundations of Ergodic Theory, Cambridge University Press, 2016.
![]() ![]() |
|
P. Walters,
An Introduction to Ergodic Theory, Springer-Verlag, 1982.
![]() ![]() |
|
F. Wirth,
Robust Stability of Discrete-Time Systems under Time-Varying Perturbations, PhD thesis, Fachbereich Mathematik/Informatik, Universität Bremen, 1995.
![]() |
|
F. Wirth
, Dynamics and controllability of nonlinear discrete-time control systems, IFAC Proceedings Volumes, 31 (1998)
, 267-272.
doi: 10.1016/S1474-6670(17)40346-6.![]() ![]() |
Extremal graphs for (24) and the set
Extremal graphs for (44) and the