Metric entropies along a hierarchy of unstable foliations are investigated for $C^1 $ diffeomorphisms with dominated splitting. The analogues of Ruelle's inequality and Pesin's formula, which relate the metric entropy and Lyapunov exponents in each hierarchy, are given.
Citation: |
F. Abdenur
, C. Bonatti
and S. Crovisier
, Nonuniform hyperbolicity for C1-generic diffeomorphisms, Israel J. of Math., 183 (2011)
, 1-60.
doi: 10.1007/s11856-011-0041-5.![]() ![]() ![]() |
|
C. Bonatti, L. Díaz and M. Viana,
Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspestive, vol. 102 of Encyclopedia Math. Sci., Springer-Verlag, Berlin, 2005.
![]() ![]() |
|
E. Catsigeras
, M. Cerminara
and H. Enrich
, The Pesin entropy formula for C1 diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems, 35 (2015)
, 737-761.
doi: 10.1017/etds.2013.93.![]() ![]() ![]() |
|
H.-Y. Hu
, Y.-X. Hua
and W.-S. Wu
, Unstable entropies and variational principle for partially hyperbolic diffeomorphisms, Advances in Mathematics, 321 (2017)
, 31-68.
doi: 10.1016/j.aim.2017.09.039.![]() ![]() ![]() |
|
F. Ledrappier
and L.-S. Young
, The metric entropy of diffeomorphisms: Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985)
, 509-539.
doi: 10.2307/1971328.![]() ![]() ![]() |
|
F. Ledrappier
and L.-S. Young
, The metric entropy of diffeomorphisms: Part Ⅱ: Relations between entropy, exponents and dimension, Ann. of Math., 122 (1985)
, 540-574.
doi: 10.2307/1971329.![]() ![]() ![]() |
|
P. -D. Liu and M. Qian,
Smooth Ergodic Theory of Random Dynamical Systems, vol. 1606 of Lecture Notes in Math., Springer-Verlag, Berlin, 1995.
![]() ![]() |
|
R. Mañé
, A proof of Pesin's formula, Ergodic Theory Dynam. Systems, 1 (1981)
, 95-102.
![]() ![]() |
|
V. I. Oseledec
, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obv'sv'c., 19 (1968)
, 179-210.
![]() ![]() |
|
Y. B. Pesin
, Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977)
, 55-112.
![]() ![]() |
|
Y. B. Pesin
and Y. G. Sinai
, Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems, 2 (1982)
, 417-438.
![]() ![]() |
|
E. R. Pujals, From hyperbolicity to dominated splitting, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow (eds. G. Forni, M. Lyubich, C. Pugh and M. Shub), vol. 51 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, (2007), 89-102.
![]() ![]() |
|
V. A. Rokhlin, On the fundamental ideas of measure theory,
Amer. Math. Soc. Transl. , 1952 (1952), 55pp.
![]() ![]() |
|
D. Ruelle
, An inequality for the entropy of differentiable maps, Bull. Braz. Math. Soc., 9 (1978)
, 83-87.
doi: 10.1007/BF02584795.![]() ![]() ![]() |
|
M. Sambarino, A (short) survey on dominated splitting, Mathematical Congress of the Americas, 149-183, Contemp. Math., 656, Amer. Math. Soc., Providence, RI, 2016.
![]() ![]() |
|
W.-X. Sun
and X.-T. Tian
, Dominated splitting and Pesin's entropy formula, Discrete Contin. Dyn. Syst., 32 (2010)
, 1421-1434.
![]() ![]() |
|
X.-T. Tian
, Pesin's entropy formula for systems between ${C}^1 $ and ${C}^{1+α} $, J. Stat. Phys., 156 (2014)
, 1184-1198.
doi: 10.1007/s10955-014-1065-0.![]() ![]() ![]() |