\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Formula of entropy along unstable foliations for $C^1$ diffeomorphisms with dominated splitting

  • * The corresponding author

    * The corresponding author

It is supported by NSFC(No:11371120,11771118). The third author is also supported by Fundamental Research Funds for the Central University, China(No:20720170004)

Abstract Full Text(HTML) Related Papers Cited by
  • Metric entropies along a hierarchy of unstable foliations are investigated for $C^1 $ diffeomorphisms with dominated splitting. The analogues of Ruelle's inequality and Pesin's formula, which relate the metric entropy and Lyapunov exponents in each hierarchy, are given.

    Mathematics Subject Classification: Primary: 37A35, 37D30; Secondary: 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   F. Abdenur , C. Bonatti  and  S. Crovisier , Nonuniform hyperbolicity for C1-generic diffeomorphisms, Israel J. of Math., 183 (2011) , 1-60.  doi: 10.1007/s11856-011-0041-5.
      C. Bonatti, L. Díaz and M. Viana, Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspestive, vol. 102 of Encyclopedia Math. Sci., Springer-Verlag, Berlin, 2005.
      E. Catsigeras , M. Cerminara  and  H. Enrich , The Pesin entropy formula for C1 diffeomorphisms with dominated splitting, Ergodic Theory Dynam. Systems, 35 (2015) , 737-761.  doi: 10.1017/etds.2013.93.
      H.-Y. Hu , Y.-X. Hua  and  W.-S. Wu , Unstable entropies and variational principle for partially hyperbolic diffeomorphisms, Advances in Mathematics, 321 (2017) , 31-68.  doi: 10.1016/j.aim.2017.09.039.
      F. Ledrappier  and  L.-S. Young , The metric entropy of diffeomorphisms: Part Ⅰ: Characterization of measures satisfying Pesin's entropy formula, Ann. of Math., 122 (1985) , 509-539.  doi: 10.2307/1971328.
      F. Ledrappier  and  L.-S. Young , The metric entropy of diffeomorphisms: Part Ⅱ: Relations between entropy, exponents and dimension, Ann. of Math., 122 (1985) , 540-574.  doi: 10.2307/1971329.
      P. -D. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, vol. 1606 of Lecture Notes in Math., Springer-Verlag, Berlin, 1995.
      R. Mañé , A proof of Pesin's formula, Ergodic Theory Dynam. Systems, 1 (1981) , 95-102. 
      V. I. Oseledec , A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trudy Moskov. Mat. Obv'sv'c., 19 (1968) , 179-210. 
      Y. B. Pesin , Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977) , 55-112. 
      Y. B. Pesin  and  Y. G. Sinai , Gibbs measures for partially hyperbolic attractors, Ergodic Theory Dynam. Systems, 2 (1982) , 417-438. 
      E. R. Pujals, From hyperbolicity to dominated splitting, in Partially Hyperbolic Dynamics, Laminations, and Teichmüller Flow (eds. G. Forni, M. Lyubich, C. Pugh and M. Shub), vol. 51 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, (2007), 89-102.
      V. A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. , 1952 (1952), 55pp.
      D. Ruelle , An inequality for the entropy of differentiable maps, Bull. Braz. Math. Soc., 9 (1978) , 83-87.  doi: 10.1007/BF02584795.
      M. Sambarino, A (short) survey on dominated splitting, Mathematical Congress of the Americas, 149-183, Contemp. Math., 656, Amer. Math. Soc., Providence, RI, 2016.
      W.-X. Sun  and  X.-T. Tian , Dominated splitting and Pesin's entropy formula, Discrete Contin. Dyn. Syst., 32 (2010) , 1421-1434. 
      X.-T. Tian , Pesin's entropy formula for systems between ${C}^1 $ and ${C}^{1+α} $, J. Stat. Phys., 156 (2014) , 1184-1198.  doi: 10.1007/s10955-014-1065-0.
  • 加载中
SHARE

Article Metrics

HTML views(1481) PDF downloads(223) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return