The aim of this paper is to adapt the strategy in [
Citation: |
H. Bahouri, J. Y. Chemin and R. Danchin,
Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011.
doi: 10.1007/978-3-642-16830-7.![]() ![]() ![]() |
|
A. V. Balakrishnan
, Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960)
, 419-437.
doi: 10.2140/pjm.1960.10.419.![]() ![]() ![]() |
|
T. Boulenger
, D. Himmelsbach
and E. Lenzmann
, Blow up for fractional NLS, J. Functional Analysis, 271 (2016)
, 2569-2603.
doi: 10.1016/j.jfa.2016.08.011.![]() ![]() ![]() |
|
W. Chen
, C. Miao
and X. Yao
, Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012)
, 479-510.
doi: 10.1080/03605302.2011.641053.![]() ![]() ![]() |
|
Y. Cho
and T. Ozawa
, Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009)
, 355-365.
doi: 10.1142/S0219199709003399.![]() ![]() ![]() |
|
Y. Cho
, G. Hwang
, S. Kwon
and S. Lee
, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015)
, 2863-2880.
doi: 10.3934/dcds.2015.35.2863.![]() ![]() ![]() |
|
V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.
![]() |
|
B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS,
Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195.
doi: 10.1090/proc/13678.![]() ![]() ![]() |
|
R. L. Frank
and E. Lenzmann
, Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013)
, 261-318.
doi: 10.1007/s11511-013-0095-9.![]() ![]() ![]() |
|
R. L. Frank
, E. Lenzmann
and L. Silvestre
, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016)
, 1671-1726.
doi: 10.1002/cpa.21591.![]() ![]() ![]() |
|
Z. Guo
and Y. Wang
, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014)
, 1-38.
doi: 10.1007/s11854-014-0025-6.![]() ![]() ![]() |
|
Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.
![]() |
|
Y. Hong
and Y. Sire
, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015)
, 2265-2282.
doi: 10.3934/cpaa.2015.14.2265.![]() ![]() ![]() |
|
C. E. Kenig
, G. Ponce
and L. Vega
, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993)
, 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
|
C. E. Kenig
and F. Merle
, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006)
, 645-675.
doi: 10.1007/s00222-006-0011-4.![]() ![]() ![]() |
|
J. Krieger
, E. Lenzmann
and P. Raphaël
, Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013)
, 61-129.
doi: 10.1007/s00205-013-0620-1.![]() ![]() ![]() |
|
N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp.
doi: 10.1103/PhysRevE.66.056108.![]() ![]() ![]() |
|
T. Ogawa
and Y. Tsutsumi
, Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991)
, 317-330.
doi: 10.1016/0022-0396(91)90052-B.![]() ![]() ![]() |
|
E. M. Stein,
Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.
![]() ![]() |
|
T. Tao
, On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004)
, 1-47.
doi: 10.4310/DPDE.2004.v1.n1.a1.![]() ![]() |