\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data

  • * Corresponding author: Hua Wang

    * Corresponding author: Hua Wang 

The first and last authors are financed by ERC project SCAPDE, the second author is supported by NSF grant 11101172, 11371158 and 11571131, and the third author is supported by NSF grant 11371158 and 11771165

Abstract Full Text(HTML) Related Papers Cited by
  • The aim of this paper is to adapt the strategy in [8] [ See, B. Dodson, J. Murphy, a new proof of scattering below the ground state for the 3D radial focusing cubic NLS, arXiv:1611.04195 ] to prove the scattering of radial solutions below sharp threshold for certain focusing fractional NLS. The main ingredient is to apply the fractional virial identity proved in [3] [ See, T. Boulenger, D. Himmelsbach, E. Lenzmann, Blow up for fractional NLS, J. Func. Anal, 271(2016), 2569-2603 ] to exclude the concentration of mass near the origin.

    Mathematics Subject Classification: Primary: 35P25, 35Q55; Secondary: 47J35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Bahouri, J. Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, 343, Springer-Verlag, Berlin, Heidelberg, 2011. doi: 10.1007/978-3-642-16830-7.
      A. V. Balakrishnan , Fractional powers of closed operators and the semigroups generated by them, Pacific. J. Math., 10 (1960) , 419-437.  doi: 10.2140/pjm.1960.10.419.
      T. Boulenger , D. Himmelsbach  and  E. Lenzmann , Blow up for fractional NLS, J. Functional Analysis, 271 (2016) , 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.
      W. Chen , C. Miao  and  X. Yao , Dispersive estimates with geometry of finite type, Communications in Partial Differential Equations, 37 (2012) , 479-510.  doi: 10.1080/03605302.2011.641053.
      Y. Cho  and  T. Ozawa , Sobolev inequalities with symmetry, Commun. Contemp. Math., 11 (2009) , 355-365.  doi: 10.1142/S0219199709003399.
      Y. Cho , G. Hwang , S. Kwon  and  S. Lee , Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete and Continuous Dynamical Systems, 35 (2015) , 2863-2880.  doi: 10.3934/dcds.2015.35.2863.
      V. D. Dinh, On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces, preprint, arXiv: 1701.00852.
      B. Dodson and J. Murphy, A new proof of scattering below the ground state for the 3D radial focusing NLS, Proc. Amer. Math. Soc., 145 (2017), 4859-4867, arXiv: 1611.04195. doi: 10.1090/proc/13678.
      R. L. Frank  and  E. Lenzmann , Uniqueness of non-linear ground states for fractional Laplacian in $ \mathbb{R}$, Acta Math., 210 (2013) , 261-318.  doi: 10.1007/s11511-013-0095-9.
      R. L. Frank , E. Lenzmann  and  L. Silvestre , Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016) , 1671-1726.  doi: 10.1002/cpa.21591.
      Z. Guo  and  Y. Wang , Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equation, J. Anal. Math., 124 (2014) , 1-38.  doi: 10.1007/s11854-014-0025-6.
      Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrodinger equation in the radial case, preprint, arXiv: 1310.6816.
      Y. Hong  and  Y. Sire , On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015) , 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.
      C. E. Kenig , G. Ponce  and  L. Vega , Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. App. Math., 46 (1993) , 527-620.  doi: 10.1002/cpa.3160460405.
      C. E. Kenig  and  F. Merle , Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006) , 645-675.  doi: 10.1007/s00222-006-0011-4.
      J. Krieger , E. Lenzmann  and  P. Raphaël , Nondispersive solutions to the $ L^2$-critical half-wave equations, Arch. Ration. Mech. Anal., 209 (2013) , 61-129.  doi: 10.1007/s00205-013-0620-1.
      N. Laskin, Fractional Schrödinger equation Phys. Rev. E, 66 (2002), 056108, 7 pp. doi: 10.1103/PhysRevE.66.056108.
      T. Ogawa  and  Y. Tsutsumi , Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differ. Eqns., 92 (1991) , 317-330.  doi: 10.1016/0022-0396(91)90052-B.
      E. M. Stein, Harmonic Analysis: Real-Variable Theory, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, New Jersey, 2000.
      T. Tao , On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial. Differ.Equ., 1 (2004) , 1-47.  doi: 10.4310/DPDE.2004.v1.n1.a1.
  • 加载中
SHARE

Article Metrics

HTML views(627) PDF downloads(309) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return