We consider the fractional unforced Burgers equation in the one-dimensional space-periodic setting:
$\begin{equation} \nonumber\frac{\partial u}{\partial t}+(f(u))_x +ν Λ^{α} u = 0, t ≥ 0,\ \ \ \ {\bf{x}} ∈ {\mathbb{T}}^d = ({\mathbb{R}}/{\mathbb{Z}})^d.\end{equation}$
Here $ f$ is strongly convex and satisfies a growth condition, $ Λ = \sqrt{-Δ}, \ ν$ is small and positive, while $ α ∈ (1,\ 2)$ is a constant in the subcritical range.
For solutions $ u$ of this equation, we generalise the results obtained for the case $ α = 2$ (i.e. when $ -Λ^{α}$ is the Laplacian) in [
The form of all estimates is the same as in the case $ α = 2$; the only thing which changes is that $ ν$ is replaced by $ ν^{1/(α-1)}$.
Citation: |
R. A. Adams,
Sobolev Spaces, Academic Press, 1975.
![]() ![]() |
|
M. Alfaro
and J. Droniou
, General fractal conservation laws arising from a model of detonations in gases, Applied Mathematics Research eXpress, 2012 (2012)
, 127-151.
![]() ![]() |
|
N. Alibaud
, J. Droniou
and J. Vovelle
, Occurence and non-appearance of shocks in fractal Burgers equations, Journal of Hyperbolic Differential Equations, 4 (2007)
, 479-499.
doi: 10.1142/S0219891607001227.![]() ![]() ![]() |
|
E. Aurell
, U. Frisch
, J. Lutsko
and M. Vergassola
, On the multifractal properties of the energy dissipation derived from turbulence data, Journal of Fluid Mechanics, 238 (1992)
, 467-486.
doi: 10.1017/S0022112092001782.![]() ![]() ![]() |
|
C. Bardos
, U. Frisch
, W. Pauls
, S. S. Ray
and E. S. Titi
, Entire solutions of hydrodynamical equations with exponential dissipation, Communications in Mathematical Physics, 293 (2010)
, 519-543.
doi: 10.1007/s00220-009-0916-z.![]() ![]() ![]() |
|
J. Bec
and K. Khanin
, Burgers turbulence, Physics Reports, 447 (2007)
, 1-66.
doi: 10.1016/j.physrep.2007.04.002.![]() ![]() ![]() |
|
P. Biler
, T. Funaki
and W. Woyczynski
, Fractal Burgers equations, Journal of Differential Equations, 148 (1998)
, 9-46.
doi: 10.1006/jdeq.1998.3458.![]() ![]() ![]() |
|
A. Biryuk
, Spectral properties of solutions of the Burgers equation with small dissipation, Functional Analysis and its Applications, 35 (2001)
, 1-12.
doi: 10.1023/A:1004143415090.![]() ![]() ![]() |
|
A. Boritchev,
Generalised Burgers Equation with Random Force and Small Viscosity, PhD thesis, Ecole Polytechnique, 2012. http://math.univ-lyon1.fr/homes-www/boritchev/Thesis.pdf.
![]() |
|
A. Boritchev
, Estimates for solutions of a low-viscosity kick-forced generalised Burgers equation, Proceedings of the Royal Society of Edinburgh A, 143 (2013)
, 253-268.
doi: 10.1017/S0308210511000989.![]() ![]() ![]() |
|
A. Boritchev
, Sharp estimates for turbulence in white-forced generalised Burgers equation, Geometric and Functional Analysis, 23 (2013)
, 1730-1771.
doi: 10.1007/s00039-013-0245-4.![]() ![]() ![]() |
|
A. Boritchev
, Decaying turbulence in generalised Burgers equation, Archive for Rational Mechanics and Analysis, 214 (2014)
, 331-357.
doi: 10.1007/s00205-014-0766-5.![]() ![]() ![]() |
|
A. Boritchev
, Erratum to: Multidimensional potential Burgers turbulence, Communications in Mathematical Physics, 344 (2016)
, 369-370.
doi: 10.1007/s00220-016-2621-z.![]() ![]() ![]() |
|
A. Boritchev
, Multidimensional potential Burgers turbulence, Communications in Mathematical Physics, 342 (2016)
, 441-489.
doi: 10.1007/s00220-015-2521-7.![]() ![]() ![]() |
|
Z. Brzezniak
, L. Debbi
and B. Goldys
, Ergodic properties of fractional stochastic Burgers equation, Global and Stochastic Analysis, 1 (2011)
, 145-174.
![]() |
|
J. M. Burgers,
The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems, Reidel, 1974.
doi: 10.1007/978-94-010-1745-9.![]() ![]() |
|
N. Burq
and N. Tzvetkov
, Random data Cauchy theory for supercritical wave equations Ⅰ: Local theory, Inventiones Mathematicae, 173 (2008)
, 449-475.
doi: 10.1007/s00222-008-0124-z.![]() ![]() ![]() |
|
L. Caffarelli
and A. Vasseur
, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Annals of Mathematics, 171 (2010)
, 1903-1930.
doi: 10.4007/annals.2010.171.1903.![]() ![]() ![]() |
|
C. H. Chan
and M. Czubak
, Regularity of solutions for the critical N-dimensional Burgers' equation, Annales de l'Institut Henri Poincare: Analyse non Lineaire, 27 (2010)
, 471-501.
doi: 10.1016/j.anihpc.2009.11.008.![]() ![]() ![]() |
|
A. Chorin,
Lectures on Turbulence Theory, volume 5 of Mathematics Lecture Series, Publish or Perish, 1975.
![]() ![]() |
|
P. Clavin and B. Denet, Diamond patterns in the cellular front of an overdriven detonation Physical Review Letters, 88 (2002), 044502.
doi: 10.1103/PhysRevLett.88.044502.![]() ![]() |
|
P. Constantin
, A. Tarfulea
and V. Vicol
, Long time dynamics of forced critical SQG, Communications in Mathematical Physics, 335 (2015)
, 93-141.
doi: 10.1007/s00220-014-2129-3.![]() ![]() ![]() |
|
P. Constantin
and V. Vicol
, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geometric and Functional Analysis, 22 (2012)
, 1289-1321.
doi: 10.1007/s00039-012-0172-9.![]() ![]() ![]() |
|
A. Córdoba
and D. Córdoba
, A maximum principle applied to quasi-geostrophic equations, Communications in Mathematical Physics, 249 (2004)
, 511-528.
doi: 10.1007/s00220-004-1055-1.![]() ![]() ![]() |
|
G. Da Prato and J. Zabczyk,
Stochastic Equations in Infinite Dimensions, volume 45 of Encyclopaedia of Mathematics and its Applications. Cambridge University Press, 1992.
![]() ![]() |
|
G. Da Prato and J. Zabczyk,
Ergodicity for Infinite Dimensional Systems, volume 229 of London Mathematical Society Lecture Notes. Cambridge University Press, 1996.
![]() ![]() |
|
M. Dabkowski
, A. Kiselev
, L. Silvestre
and V. Vicol
, Global well-posedness of slightly supercritical active scalar equations, Analysis & PDE, 7 (2014)
, 43-72.
doi: 10.2140/apde.2014.7.43.![]() ![]() ![]() |
|
C. Doering and J. D. Gibbon,
Applied Analysis of the Navier-Stokes Equations, Cambridge Texts in Applied Mathematics. Cambridge University Press, 1995.
![]() ![]() |
|
H. J. Dong
, D. Du
and D. Li
, Finite-time singularities and Global well-posedness for fractal Burgers' equations, Indiana University Mathematics Journal, 58 (2009)
, 807-821.
doi: 10.1512/iumj.2009.58.3505.![]() ![]() ![]() |
|
J. Droniou
, T. Gallouët
and J. Vovelle
, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, Journal of Evolution Equations, 3 (2003)
, 499-521.
doi: 10.1007/s00028-003-0503-1.![]() ![]() ![]() |
|
L. Evans,
Partial Differential Equations, Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010.
![]() ![]() |
|
J. D. Fournier
and U. Frisch
, L'équation de Burgers déterministe et stastistique, Journal de Mécanique Théorique et Appliquée, 2 (1983)
, 699-750.
![]() ![]() |
|
U. Frisch,
Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, 1995.
![]() ![]() |
|
B. Jourdain
, S. Méléard
and W. Woyczynski
, Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws, Bernoulli, 11 (2005)
, 689-714.
doi: 10.3150/bj/1126126765.![]() ![]() ![]() |
|
B. Jourdain
and R. Roux
, Convergence of a stochastic particle approximation for fractional scalar conservation laws, Stochastic Processes and their Applications, 121 (2011)
, 957-988.
doi: 10.1016/j.spa.2011.01.012.![]() ![]() ![]() |
|
S. Kida
, Asymptotic properties of Burgers turbulence, Journal of Fluid Mechanics, 93 (1979)
, 337-377.
doi: 10.1017/S0022112079001932.![]() ![]() ![]() |
|
A. Kiselev
, F. Nazarov
and R. Shterenberg
, Blow up and regularity for fractal Burgers equations, Dynamics of PDE, 5 (2008)
, 211-240.
doi: 10.4310/DPDE.2008.v5.n3.a2.![]() ![]() ![]() |
|
R. H. Kraichnan
, Lagrangian-history statistical theory for Burgers' equation, Physics of Fluids, 11 (1968)
, 265-277.
doi: 10.1063/1.1691900.![]() ![]() |
|
S.N. Kruzhkov
, The Cauchy Problem in the large for nonlinear equations and for certain quasilinear systems of the first-order with several variables, Soviet Math. Doklady, 5 (1964)
, 493-496.
![]() |
|
S. Kuksin
, On turbulence in nonlinear Schrödinger equations, Geometric and Functional Analysis, 7 (1997)
, 783-822.
doi: 10.1007/s000390050026.![]() ![]() ![]() |
|
S. Kuksin
, Spectral properties of solutions for nonlinear PDEs in the turbulent regime, Geometric and Functional Analysis, 9 (1999)
, 141-184.
doi: 10.1007/s000390050083.![]() ![]() ![]() |
|
A. Polyakov
, Turbulence without pressure, Physical Review E, 52 (1995)
, 6183-6188.
doi: 10.1103/PhysRevE.52.6183.![]() ![]() ![]() |
|
B. Protas and D. Yun,
Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation,
J. Nonlinear Sci., 28 (2018), 395-422, arXiv: 1610.09578
![]() ![]() |
|
M. Taylor,
Partial Differential Equations Ⅰ: Basic Theory, volume 115 of Applied Mathematical Sciences. Springer, 1996.
![]() ![]() |
|
A. Truman
and J.-L. Wu
, On a stochastic nonlinear equation arising from 1d integro-differential scalar conservation laws, Journal of Functional Analysis, 238 (2006)
, 612-635.
doi: 10.1016/j.jfa.2006.01.012.![]() ![]() ![]() |