This paper is concerned with the global stability of V-shaped traveling fronts in reaction-diffusion equations with combustion and degenerate monostable nonlinearity. The existence of such curved fronts has been recently proved by [
Citation: |
D. G. Aronson
and H. F. Weinberger
, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978)
, 33-76.
doi: 10.1016/0001-8708(78)90130-5.![]() ![]() ![]() |
|
A. Bonnet
and F. Hamel
, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM J. Math. Anal., 31 (1999)
, 80-118.
doi: 10.1137/S0036141097316391.![]() ![]() ![]() |
|
P. K. Brazhnik
, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media, Physica D, 94 (1996)
, 205-220.
doi: 10.1016/0167-2789(96)00042-5.![]() ![]() |
|
Z.-H. Bu
and Z.-C. Wang
, Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media, Commun. Pure Appl. Anal., 15 (2016)
, 139-160.
doi: 10.3934/cpaa.2016.15.139.![]() ![]() ![]() |
|
Z.-H. Bu
and Z.-C. Wang
, Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations Ⅰ, Discrete Contin. Dyn. Syst., 37 (2017)
, 2395-2430.
doi: 10.3934/dcds.2017104.![]() ![]() ![]() |
|
C. Conley
and R. Gardner
, An application of the generalized Morse index to traveling wave solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984)
, 319-343.
doi: 10.1512/iumj.1984.33.33018.![]() ![]() ![]() |
|
M. El Smaily
, F. Hamel
and R. Huang
, Two-dimensional curved fronts in a periodic shear flow, Nonlinear Anal., 74 (2011)
, 6469-6486.
doi: 10.1016/j.na.2011.06.030.![]() ![]() ![]() |
|
P. C. Fife,
Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics 28, Springer-Verlag, Berlin-New York, 1979.
doi: 10.1007/978-3-642-93111-6.![]() ![]() ![]() |
|
P. C. Fife
and J. B. McLeod
, The approach of solutions of nonlinear diffusion equations to traveling wave solutions, Arch. Rational Mech. Anal., 65 (1977)
, 335-361.
doi: 10.1007/BF00250432.![]() ![]() ![]() |
|
P. C. Fife
and J. B. McLeod
, A phase discussion of convergence to traveling fronts for nonlinear diffusions, Arch. Rational Mech. Anal., 75 (1980/81)
, 281-314.
doi: 10.1007/BF00256381.![]() ![]() ![]() |
|
R. Fisher
, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937)
, 355-369.
![]() |
|
F. Hamel
, Bistable transition fronts in $ \mathbb{R}^{N}$, Adv. Math., 289 (2016)
, 279-344.
doi: 10.1016/j.aim.2015.11.033.![]() ![]() ![]() |
|
F. Hamel
and R. Monneau
, Solutions of semilinear elliptic equations in $ \mathbb{R}^{N}$ with conicalshaped level sets, Comm. Partial Differential Equations, 25 (2000)
, 769-819.
doi: 10.1080/03605300008821532.![]() ![]() ![]() |
|
F. Hamel
, R. Monneau
and J.-M. Roquejoffre
, Stability of conical fronts in a model for conical flames in two space dimensions, Ann. Sci. École Normale Sup., 37 (2004)
, 469-506.
doi: 10.1016/j.ansens.2004.03.001.![]() ![]() ![]() |
|
F. Hamel
, R. Monneau
and J.-M. Roquejoffre
, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005)
, 1069-1096.
doi: 10.3934/dcds.2005.13.1069.![]() ![]() ![]() |
|
F. Hamel
, R. Monneau
and J.-M. Roquejoffre
, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006)
, 75-92.
doi: 10.3934/dcds.2006.14.75.![]() ![]() ![]() |
|
F. Hamel
and N. Nadirashvili
, Travelling fronts and entire solutions of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Arch. Ration. Mech. Anal., 157 (2001)
, 91-163.
doi: 10.1007/PL00004238.![]() ![]() ![]() |
|
R. Huang
, Stability of travelling fronts of the Fisher-KPP equation in $ \mathbb{R}^{N}$, Nonlinear Diff. Eq. Appl., 15 (2008)
, 599-622.
doi: 10.1007/s00030-008-7041-0.![]() ![]() ![]() |
|
A. N. Kolmogorov
, I. G. Petrovskii
and N. S. Piskunov
, Étude de I'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Moskov. Gos. Univ. Mat. Mekh., 1 (1937)
, 1-25.
![]() |
|
Y. Kurokawa
and M. Taniguchi
, Multi-dimensional pyramidal traveling fronts in Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011)
, 1031-1054.
doi: 10.1017/S0308210510001253.![]() ![]() ![]() |
|
J. A. Leach
, D. J. Needham
and A. L. Kay
, The evolution of reaction-diffusion waves in a class of scalar reaction-diffusion equations: Algebraic decay rates, Phys. D, 167 (2002)
, 153-182.
doi: 10.1016/S0167-2789(02)00428-1.![]() ![]() ![]() |
|
X. Liang
and X.-Q. Zhao
, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60 (2007)
, 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
|
R. H. Martin
and H. L. Smith
, Abstract functional differential equations and reactiondiffusion systems, Trans. Amer. Math. Soc., 321 (1990)
, 1-44.
doi: 10.2307/2001590.![]() ![]() ![]() |
|
J. D. Murray,
Mathematical Biology, Springer-Verlag, Berlin, 1989.
doi: 10.1007/978-3-662-08539-4.![]() ![]() ![]() |
|
W.-M. Ni
and M. Taniguchi
, Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, 8 (2013)
, 379-395.
doi: 10.3934/nhm.2013.8.379.![]() ![]() ![]() |
|
H. Ninomiya
and M. Taniguchi
, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006)
, 819-832.
doi: 10.3934/dcds.2006.15.819.![]() ![]() ![]() |
|
H. Ninomiya
and M. Taniguchi
, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005)
, 204-233.
doi: 10.1016/j.jde.2004.06.011.![]() ![]() ![]() |
|
H. Ninomiya
and M. Taniguchi
, Stability of traveling curved fronts in a curvature flow with driving force, Methods Appl. Anal., 8 (2001)
, 429-450.
doi: 10.4310/MAA.2001.v8.n3.a4.![]() ![]() ![]() |
|
D. H. Sattinger
, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Insiana Univ. Math. J., 21 (1972)
, 979-1000.
doi: 10.1512/iumj.1972.21.21079.![]() ![]() ![]() |
|
W.-J. Sheng
, W.-T. Li
and Z.-C. Wang
, Periodic pyramidal traveling fronts of bistable reaction-diffusion equations with time-periodic nonlinearity, J. Differential Equations, 252 (2012)
, 2388-2424.
doi: 10.1016/j.jde.2011.09.016.![]() ![]() ![]() |
|
W.-J. Sheng
, W.-T. Li
and Z.-C. Wang
, Multidimensional stability of V-shaped traveling fronts in the Allen-Cahn equation, Sci. China Math., 56 (2013)
, 1969-1982.
doi: 10.1007/s11425-013-4699-5.![]() ![]() ![]() |
|
M. Taniguchi
, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007)
, 319-344.
doi: 10.1137/060661788.![]() ![]() ![]() |
|
M. Taniguchi
, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009)
, 2103-2130.
doi: 10.1016/j.jde.2008.06.037.![]() ![]() ![]() |
|
M. Taniguchi
, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contnu. Dyn. Syst., 32 (2012)
, 1011-1046.
doi: 10.3934/dcds.2012.32.1011.![]() ![]() ![]() |
|
M. Taniguchi
, An (N-1)-dimensional convex compact set gives an N-dimensional traveling front in the Allen-Cahn equation, SIAM J. Math. Anal., 47 (2015)
, 455-476.
doi: 10.1137/130945041.![]() ![]() ![]() |
|
A. I. Volpert, V. A. Volpert and V. A. Volpert,
Traveling Wave Solutions of Parabolic Systems, 140, Amer. Math. Soc., Providence, RI, 1994.
![]() ![]() |
|
Z.-C. Wang
, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012)
, 2339-2374.
doi: 10.3934/dcds.2012.32.2339.![]() ![]() ![]() |
|
Z.-C. Wang
, Cylindrically symmetric traveling fronts in reaction-diffusion equations with bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015)
, 1053-1090.
doi: 10.1017/S0308210515000268.![]() ![]() ![]() |
|
Z.-C. Wang
and Z.-H. Bu
, Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearity, J. Differential Equations, 260 (2016)
, 6405-6450.
doi: 10.1016/j.jde.2015.12.045.![]() ![]() ![]() |
|
Z.-C. Wang
, W.-T. Li
and S. Ruan
, Existence and stability of traveling wave fronts in reaction advecion diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007)
, 153-200.
doi: 10.1016/j.jde.2007.03.025.![]() ![]() ![]() |
|
Z.-C. Wang
, W.-T. Li
and S. Ruan
, Existence, uniqueness and stability of pyramidal traveling fronts in reaction-diffusion systems, Sci. China Math., 59 (2016)
, 1869-1908.
doi: 10.1007/s11425-016-0015-x.![]() ![]() ![]() |
|
Z.-C. Wang
, H.-L. Niu
and S. Ruan
, On the existence of axisymmetric traveling fronts in the Lotka-Volterra competition-diffusion system in $ \mathbb{R}^{3}$, Discrete Contin. Dyn. Syst -B, 22 (2017)
, 1111-1144.
doi: 10.3934/dcdsb.2017055.![]() ![]() ![]() |
|
Z.-C. Wang
and J. Wu
, Periodic traveling curved fronts in reaction-diffusion equation with bistable time-periodic nonlinearity, J. Differential Equations, 250 (2011)
, 3196-3229.
doi: 10.1016/j.jde.2011.01.017.![]() ![]() ![]() |
The profiles of the traveling curved front
The level sets of the traveling curved front